Boundary effects in extended dynamical systems

被引:7
|
作者
Eguíluz, VM [1 ]
Hernández-García, E [1 ]
Piro, O [1 ]
机构
[1] Univ Illes Balears, CSIC, IMEDEA, E-07071 Palma de Mallorca, Spain
关键词
spatiotemporal chaos; pattern formation; boundary conditions; Kuramoto-Sivashinsky; Ginzburg-Landau;
D O I
10.1016/S0378-4371(00)00126-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the framework of spatially extended dynamical systems, we present three examples in which the presence of walls leads to dynamic behavior qualitatively different from the one obtained in an infinite domain or under periodic boundary conditions. For a nonlinear reaction-diffusion model we obtain boundary-induced spatially chaotic configurations. Nontrivial average patterns arising from boundaries are shown to appear in spatiotemporally chaotic states of the Kuramoto-Sivashinsky model. Finally, walls organize novel states in simulations of the complex Ginzburg-Landau equation. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:48 / 51
页数:4
相关论文
共 50 条
  • [31] NON-GAUSSIAN DISTRIBUTIONS IN EXTENDED DYNAMICAL-SYSTEMS
    BHAGAVATULA, R
    JAYAPRAKASH, C
    PHYSICAL REVIEW LETTERS, 1993, 71 (22) : 3657 - 3660
  • [32] Stochastic resonance and energy optimization in spatially extended dynamical systems
    Lai, Y. -C.
    Park, K.
    Rajagopalan, L.
    EUROPEAN PHYSICAL JOURNAL B, 2009, 69 (01): : 65 - 70
  • [33] SOME DYNAMICAL EFFECTS OF HEAT ON A TURBULENT BOUNDARY LAYER
    NICHOLL, CIH
    JOURNAL OF FLUID MECHANICS, 1970, 40 : 361 - &
  • [34] MEMORY EFFECTS IN DISCRETE DYNAMICAL SYSTEMS
    Aicardi, Francesca
    Invernizzi, Sergio
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1992, 2 (04): : 815 - 830
  • [35] On the effects of random time in dynamical systems
    Jumarie, G
    KYBERNETES, 2000, 29 (9-10) : 1264 - 1271
  • [36] High Junction and Twin Boundary Densities in Driven Dynamical Systems
    Ding, X.
    Zhao, Z.
    Lookman, T.
    Saxena, A.
    Salje, E. K. H.
    ADVANCED MATERIALS, 2012, 24 (39) : 5385 - 5389
  • [37] Dynamical systems with boundary control: models and characterization of inverse data
    Belishev, MI
    INVERSE PROBLEMS, 2001, 17 (04) : 659 - 682
  • [38] SMALL RANDOM PERTURBATION OF DYNAMICAL-SYSTEMS WITH REFLECTING BOUNDARY
    ANDERSON, RF
    OREY, S
    NAGOYA MATHEMATICAL JOURNAL, 1976, 60 (FEB) : 189 - 216
  • [39] The stability boundary of synchronized states in globally coupled dynamical systems
    Glendinning, P
    PHYSICS LETTERS A, 1999, 259 (02) : 129 - 134
  • [40] Extended nonlinear observer normal forms for a class of nonlinear dynamical systems
    Boutat, D.
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2015, 25 (03) : 461 - 474