Quantum Switching and Quantum Walks

被引:0
|
作者
Chang, Ting-Hsu [1 ]
Lin, Tein-Sheng [2 ]
Chien, Chia-Hung [1 ]
Lu, Chin-Yung [3 ]
Kuo, Sy-Yen [1 ]
机构
[1] Natl Taiwan Univ, Dept Elect Engn, Taipei 10617, Taiwan
[2] Lan Yang Inst Technol, Dept Mkt & Distribut Management, Tou Chen 26143, Ilan, Taiwan
[3] Delin Inst Technol, Dept Elect Engn, New Taipei 23654, Taiwan
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Quantum walks can be implemented in the hypercube and general graphs, where hypercube is a regular graph. According to quantum walk algorithm, unitary property of quantum walks can be preserved. In the regular graph, to develop quantum walks algorithm is focused on quantum search algorithm. Quantum switching is the reversible and parallel computation circuits, where parallel computation circuit can achieve the better performance in time complexity and space complexity. Especially, this switching can trace the behavior of quantum walks from input sequence to output sequence, looking as quantum search algorithm. Furthermore, application of unicasting and multicasting can be implemented in this circuit.
引用
收藏
页码:456 / 459
页数:4
相关论文
共 50 条
  • [31] Inhomogeneous quantum walks
    Linden, Noah
    Sharam, James
    [J]. PHYSICAL REVIEW A, 2009, 80 (05):
  • [32] Quantum Walks on Hypergraphs
    Przemysław Sadowski
    Łukasz Pawela
    Paulina Lewandowska
    Ryszard Kukulski
    [J]. International Journal of Theoretical Physics, 2019, 58 : 3382 - 3393
  • [33] Computation with quantum walks
    Kendon, Viv
    [J]. 2012 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2012,
  • [34] Quantum simulation of quantum relativistic diffusion via quantum walks
    Arnault, Pablo
    Macquet, Adrian
    Angles-Castillo, Andreu
    Marquez-Martin, Ivan
    Pina-Canelles, Vicente
    Perez, Armando
    Di Molfetta, Giuseppe
    Arrighi, Pablo
    Debbasch, Fabrice
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2020, 53 (20)
  • [35] Trojan Quantum Walks
    Henrique S. Ghizoni
    Edgard P. M. Amorim
    [J]. Brazilian Journal of Physics, 2019, 49 : 168 - 172
  • [36] Complementarity and quantum walks
    Kendon, V
    Sanders, BC
    [J]. PHYSICAL REVIEW A, 2005, 71 (02):
  • [37] Quantum walks on embeddings
    Zhan, Hanmeng
    [J]. JOURNAL OF ALGEBRAIC COMBINATORICS, 2021, 53 (04) : 1187 - 1213
  • [38] Implementation of quantum walks on IBM quantum computers
    Acasiete, F.
    Agostini, F. P.
    Moqadam, J. Khatibi
    Portugal, R.
    [J]. QUANTUM INFORMATION PROCESSING, 2020, 19 (12)
  • [39] Nested Quantum Walks with Quantum Data Structures
    Jeffery, Stacey
    Kothari, Robin
    Magniez, Frederic
    [J]. PROCEEDINGS OF THE TWENTY-FOURTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS (SODA 2013), 2013, : 1474 - 1485
  • [40] Quaternionic quantum walks
    Konno N.
    [J]. Quantum Studies: Mathematics and Foundations, 2015, 2 (1) : 63 - 76