Multi-trait genomic prediction using in-season physiological parameters increases prediction accuracy of complex traits in US wheat

被引:15
|
作者
Shahi, Dipendra [1 ]
Guo, Jia [2 ]
Pradhan, Sumit [1 ]
Khan, Jahangir [1 ]
Avci, Muhsin [1 ]
Khan, Naeem [1 ]
McBreen, Jordan [1 ]
Bai, Guihua [3 ]
Reynolds, Matthew [4 ]
Foulkes, John [5 ]
Babar, Md Ali [1 ]
机构
[1] Dept Agron, 3105 McCarty Hall B, Gainesville, FL 32611 USA
[2] Oregon State Univ, Dept Forest Ecosyst & Soc, 3180 SW Jefferson Way, Corvallis, OR 97331 USA
[3] USDA ARS, Manhattan, KS USA
[4] CIMMYT Int Maize & Wheat Improvement Ctr CIMMYT, Km 45,Carretera Mexico, El Batan, Texcoco, Mexico
[5] Univ Nottingham, Sch Biosci, Div Plant & Crop Sci, Loughborough LE12 5RD, Leics, England
基金
英国生物技术与生命科学研究理事会; 美国食品与农业研究所;
关键词
Canopy temperature; NDVI; Genomic prediction; Multi-trait genomic prediction; Spike partitioning index; Fruiting efficiency; SPECTRAL REFLECTANCE; QUALITY TRAITS; GENETIC VALUE; CANOPY TEMPERATURE; SELECTION METHODS; SPRING WHEAT; GRAIN-YIELD; INDEXES; IMPROVEMENT; IMPUTATION;
D O I
10.1186/s12864-022-08487-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background Recently genomic selection (GS) has emerged as an important tool for plant breeders to select superior genotypes. Multi-trait (MT) prediction model provides an opportunity to improve the predictive ability of expensive and labor-intensive traits. In this study, we assessed the potential use of a MT genomic prediction model by incorporating two physiological traits (canopy temperature, CT and normalized difference vegetation index, NDVI) to predict 5 complex primary traits (harvest index, HI; grain yield, GY; grain number, GN; spike partitioning index, SPI; fruiting efiiciency, FE) using two cross-validation schemes CV1 and CV2. Results In this study, we evaluated 236 wheat genotypes in two locations in 2 years. The wheat genotypes were genotyped with genotyping by sequencing approach which generated 27,466 SNPs. MT-CV2 (multi-trait cross validation 2) model improved predictive ability by 4.8 to 138.5% compared to ST-CV1(single-trait cross validation 1). However, the predictive ability of MT-CV1 was not significantly different compared to the ST-CV1 model. Conclusions The study showed that the genomic prediction of complex traits such as HI, GN, and GY can be improved when correlated secondary traits (cheaper and easier phenotyping) are used. MT genomic selection could accelerate breeding cycles and improve genetic gain for complex traits in wheat and other crops.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Multi-trait genomic prediction for nitrogen response indices in tropical maize hybrids
    Lyra, Danilo Hottis
    Mendonca, Leandro de Freitas
    Galli, Giovanni
    Alves, Filipe Couto
    Correia Granato, Italo Stefanine
    Fritsche-Neto, Roberto
    [J]. MOLECULAR BREEDING, 2017, 37 (06)
  • [32] Prediction ability of an alternative multi-trait genomic evaluation for residual feed intake
    Pravia, Maria Isabel
    Navajas, Elly Ana
    Aguilar, Ignacio
    Ravagnolo, Olga
    [J]. JOURNAL OF ANIMAL BREEDING AND GENETICS, 2023, 140 (05) : 508 - 518
  • [33] Sparse multi-trait genomic prediction under balanced incomplete block design
    Montesinos-Lopez, Osval A.
    Mosqueda-Gonzalez, Brandon A.
    Salinas-Ruiz, Josafat
    Montesinos-Lopez, Abelardo
    Crossa, Jose
    [J]. PLANT GENOME, 2023, 16 (02):
  • [34] Multi-trait ensemble genomic prediction and simulations of recurrent selection highlight importance of complex trait genetic architecture for long-term genetic gains in wheat
    Fradgley, Nick
    Gardner, Keith A.
    Bentley, Alison R.
    Howell, Phil
    Mackay, Ian J.
    Scott, Michael F.
    Mott, Richard
    Cockram, James
    [J]. IN SILICO PLANTS, 2023, 5 (01):
  • [35] Comparison of single-trait and multi-trait genomic predictions on agronomic and disease resistance traits in spring wheat
    Kassa Semagn
    José Crossa
    Jaime Cuevas
    Muhammad Iqbal
    Izabela Ciechanowska
    Maria Antonia Henriquez
    Harpinder Randhawa
    Brian L. Beres
    Reem Aboukhaddour
    Brent D. McCallum
    Anita L. Brûlé-Babel
    Amidou N’Diaye
    Curtis Pozniak
    Dean Spaner
    [J]. Theoretical and Applied Genetics, 2022, 135 : 2747 - 2767
  • [36] Comparison of single-trait and multi-trait genomic predictions on agronomic and disease resistance traits in spring wheat
    Semagn, Kassa
    Crossa, Jose
    Cuevas, Jaime
    Iqbal, Muhammad
    Ciechanowska, Izabela
    Henriquez, Maria Antonia
    Randhawa, Harpinder
    Beres, Brian L.
    Aboukhaddour, Reem
    McCallum, Brent D.
    Brule-Babel, Anita L.
    N'Diaye, Amidou
    Pozniak, Curtis
    Spaner, Dean
    [J]. THEORETICAL AND APPLIED GENETICS, 2022, 135 (08) : 2747 - 2767
  • [37] Multi-trait multi-environment genomic prediction of preliminary yield trial in pulse crop
    Saludares, Rica Amor
    Atanda, Sikiru Adeniyi
    Piche, Lisa
    Worral, Hannah
    Dariva, Francoise
    McPhee, Kevin
    Bandillo, Nonoy
    [J]. PLANT GENOME, 2024,
  • [38] Multi-trait genomic prediction in pigs using single and multistep methods based on the absorption of ungenotyped animals
    Luan, Tu
    Nordbo, Oyvind
    Andersen-Ranberg, Ina
    Meuwissen, Theo H. E.
    [J]. JOURNAL OF ANIMAL BREEDING AND GENETICS, 2023, 140 (05) : 473 - 484
  • [39] Genomic Prediction Using Multi-trait Weighted GBLUP Accounting for Heterogeneous Variances and Covariances Across the Genome
    Karaman, Emre
    Lund, Mogens S.
    Anche, Mahlet T.
    Janss, Luc
    Su, Guosheng
    [J]. G3-GENES GENOMES GENETICS, 2018, 8 (11): : 3549 - 3558
  • [40] Integrating a growth degree-days based reaction norm methodology and multi-trait modeling for genomic prediction in wheat
    Raffo, Miguel Angel
    Sarup, Pernille
    Andersen, Jeppe Reitan
    Orabi, Jihad
    Jahoor, Ahmed
    Jensen, Just
    [J]. FRONTIERS IN PLANT SCIENCE, 2022, 13