Multi-trait genomic prediction using in-season physiological parameters increases prediction accuracy of complex traits in US wheat

被引:15
|
作者
Shahi, Dipendra [1 ]
Guo, Jia [2 ]
Pradhan, Sumit [1 ]
Khan, Jahangir [1 ]
Avci, Muhsin [1 ]
Khan, Naeem [1 ]
McBreen, Jordan [1 ]
Bai, Guihua [3 ]
Reynolds, Matthew [4 ]
Foulkes, John [5 ]
Babar, Md Ali [1 ]
机构
[1] Dept Agron, 3105 McCarty Hall B, Gainesville, FL 32611 USA
[2] Oregon State Univ, Dept Forest Ecosyst & Soc, 3180 SW Jefferson Way, Corvallis, OR 97331 USA
[3] USDA ARS, Manhattan, KS USA
[4] CIMMYT Int Maize & Wheat Improvement Ctr CIMMYT, Km 45,Carretera Mexico, El Batan, Texcoco, Mexico
[5] Univ Nottingham, Sch Biosci, Div Plant & Crop Sci, Loughborough LE12 5RD, Leics, England
基金
英国生物技术与生命科学研究理事会; 美国食品与农业研究所;
关键词
Canopy temperature; NDVI; Genomic prediction; Multi-trait genomic prediction; Spike partitioning index; Fruiting efficiency; SPECTRAL REFLECTANCE; QUALITY TRAITS; GENETIC VALUE; CANOPY TEMPERATURE; SELECTION METHODS; SPRING WHEAT; GRAIN-YIELD; INDEXES; IMPROVEMENT; IMPUTATION;
D O I
10.1186/s12864-022-08487-8
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background Recently genomic selection (GS) has emerged as an important tool for plant breeders to select superior genotypes. Multi-trait (MT) prediction model provides an opportunity to improve the predictive ability of expensive and labor-intensive traits. In this study, we assessed the potential use of a MT genomic prediction model by incorporating two physiological traits (canopy temperature, CT and normalized difference vegetation index, NDVI) to predict 5 complex primary traits (harvest index, HI; grain yield, GY; grain number, GN; spike partitioning index, SPI; fruiting efiiciency, FE) using two cross-validation schemes CV1 and CV2. Results In this study, we evaluated 236 wheat genotypes in two locations in 2 years. The wheat genotypes were genotyped with genotyping by sequencing approach which generated 27,466 SNPs. MT-CV2 (multi-trait cross validation 2) model improved predictive ability by 4.8 to 138.5% compared to ST-CV1(single-trait cross validation 1). However, the predictive ability of MT-CV1 was not significantly different compared to the ST-CV1 model. Conclusions The study showed that the genomic prediction of complex traits such as HI, GN, and GY can be improved when correlated secondary traits (cheaper and easier phenotyping) are used. MT genomic selection could accelerate breeding cycles and improve genetic gain for complex traits in wheat and other crops.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Multi-trait genomic prediction using in-season physiological parameters increases prediction accuracy of complex traits in US wheat
    Dipendra Shahi
    Jia Guo
    Sumit Pradhan
    Jahangir Khan
    Muhsin AVCI
    Naeem Khan
    Jordan McBreen
    Guihua Bai
    Matthew Reynolds
    John Foulkes
    Md Ali Babar
    [J]. BMC Genomics, 23
  • [2] Multi-trait genomic selection improves the prediction accuracy of end-use quality traits in hard winter wheat
    Gill, Harsimardeep S.
    Brar, Navreet
    Halder, Jyotirmoy
    Hall, Cody
    Seabourn, Bradford W.
    Chen, Yuanhong R.
    St Amand, Paul
    Bernardo, Amy
    Bai, Guihua
    Glover, Karl
    Turnipseed, Brent
    Sehgal, Sunish K.
    [J]. PLANT GENOME, 2023, 16 (04):
  • [3] Multi-Trait Genomic Prediction of Yield-Related Traits in US Soft Wheat under Variable Water Regimes
    Guo, Jia
    Khan, Jahangir
    Pradhan, Sumit
    Shahi, Dipendra
    Khan, Naeem
    Avci, Muhsin
    Mcbreen, Jordan
    Harrison, Stephen
    Brown-Guedira, Gina
    Murphy, Joseph Paul
    Johnson, Jerry
    Mergoum, Mohamed
    Esten Mason, Richanrd
    Ibrahim, Amir M. H.
    Sutton, Russel
    Griffey, Carl
    Babar, Md Ali
    [J]. GENES, 2020, 11 (11) : 1 - 26
  • [4] Single and multi-trait genomic prediction for agronomic traits in Euterpe edulis
    Canal, Guilherme Bravim
    Valiati Barreto, Cynthia Aparecida
    Nogueira de Almeida, Francine Alves
    Zaidan, Iasmine Ramos
    do Couto, Diego Pereira
    Azevedo, Camila Ferreira
    Nascimento, Moyses
    da Silva Ferreira, Marcia Flores
    Ferreira, Adesio
    [J]. PLOS ONE, 2023, 18 (04):
  • [5] Multi-Trait Multi-Environment Genomic Prediction for End-Use Quality Traits in Winter Wheat
    Sandhu, Karansher S.
    Patil, Shruti Sunil
    Aoun, Meriem
    Carter, Arron H.
    [J]. FRONTIERS IN GENETICS, 2022, 13
  • [6] Multi-Trait Multi-Environment Genomic Prediction of Agronomic Traits in Advanced Breeding Lines of Winter Wheat
    Gill, Harsimardeep S.
    Halder, Jyotirmoy
    Zhang, Jinfeng
    Brar, Navreet K.
    Rai, Teerath S.
    Hall, Cody
    Bernardo, Amy
    St Amand, Paul
    Bai, Guihua
    Olson, Eric
    Ali, Shaukat
    Turnipseed, Brent
    Sehgal, Sunish K.
    [J]. FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [7] Multi-trait genomic-enabled prediction enhances accuracy in multi-year wheat breeding trials
    Montesinos-Lopez, Abelardo
    Runcie, Daniel E.
    Itria Ibba, Maria
    Perez-Rodriguez, Paulino
    Montesinos-Lopez, Osval A.
    Crespo, Leonardo A.
    Bentley, Alison R.
    Crossa, Jose
    [J]. G3-GENES GENOMES GENETICS, 2021, 11 (10):
  • [8] Multi-Trait Single-Step GBLUP Improves Accuracy of Genomic Prediction for Carcass Traits Using Yearling Weight and Ultrasound Traits in Hanwoo
    Mehrban, Hossein
    Naserkheil, Masoumeh
    Lee, Deukhwan
    Ibanez-Escriche, Noelia
    [J]. FRONTIERS IN GENETICS, 2021, 12
  • [9] Genetic parameters and multi-trait genomic prediction for hemoparasites infection levels in cattle
    Romero, Andrea Renata da Silva
    do Nascimento, Andre Vieira
    Oliveira, Marcia Cristina de Sena
    Okino, Cintia Hiromi
    Braz, Camila Urbano
    Scalez, Daiane Cristina Becker
    Cardoso, Diercles Francisco
    Cardoso, Fernando Flores
    Gomes, Claudia Cristina Gulias
    Caetano, Alexandre Rodrigues
    Tonhati, Humberto
    Gondro, Cedric
    de Oliveria, Henrique Nunes
    [J]. LIVESTOCK SCIENCE, 2023, 273
  • [10] Multi-Trait Regressor Stacking Increased Genomic Prediction Accuracy of Sorghum Grain Composition
    Sapkota, Sirjan
    Boatwright, J. Lucas
    Jordan, Kathleen
    Boyles, Richard
    Kresovich, Stephen
    [J]. AGRONOMY-BASEL, 2020, 10 (09):