A new classifier for speaker verification based on the fractional Brownian motion process

被引:0
|
作者
Ana, RS
Coelho, R
Alcaim, A
机构
[1] Inst Mil Engn, BR-22290270 Rio De Janeiro, Brazil
[2] Pontificia Univ Catolica Rio de Janeiro, BR-22453900 Rio De Janeiro, Brazil
来源
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel text-independent verification system based on the fractional Brownian motion (M_dim_fBm) for automatic speaker recognition (ASR) is presented in this paper. The performance of the proposed M_dim_fBm was compared to those achieved with the GMM (Gaussian Mixture Models) classifier using the mel-cepstral coefficients. We have used a speech database - obtained from fixed and cellular phones - uttered by 75 different speakers. The results have shown the superior performance of the M_dim_fBm classifier in terms of recopition accuracy. In addition, the proposed classifier employs a much simpler modeling structure as compared to the GMM.
引用
收藏
页码:253 / 259
页数:7
相关论文
共 50 条
  • [41] Tempered fractional Brownian motion
    Meerschaert, Mark M.
    Sabzikar, Farzad
    STATISTICS & PROBABILITY LETTERS, 2013, 83 (10) : 2269 - 2275
  • [42] Deconvolution of fractional Brownian motion
    Pipiras, V
    Taqqu, MS
    JOURNAL OF TIME SERIES ANALYSIS, 2002, 23 (04) : 487 - 501
  • [43] Oscillatory Fractional Brownian Motion
    T. Bojdecki
    L. G. Gorostiza
    A. Talarczyk
    Acta Applicandae Mathematicae, 2013, 127 : 193 - 215
  • [44] On the prediction of fractional Brownian motion
    Gripenberg, G
    Norros, I
    JOURNAL OF APPLIED PROBABILITY, 1996, 33 (02) : 400 - 410
  • [45] Fractal (fractional) Brownian motion
    Chow, Winston C.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2011, 3 (02): : 149 - 162
  • [46] Trading Fractional Brownian Motion
    Guasoni, Paolo
    Nika, Zsolt
    Rasonyi, Miklos
    SIAM JOURNAL ON FINANCIAL MATHEMATICS, 2019, 10 (03): : 769 - 789
  • [47] Approximations of fractional Brownian motion
    Li, Yuqiang
    Dai, Hongshuai
    BERNOULLI, 2011, 17 (04) : 1195 - 1216
  • [48] On simulating fractional Brownian motion
    Szulga, J
    Molz, F
    HIGH DIMENSIONAL PROBABILITY II, 2000, 47 : 377 - 387
  • [49] On the prediction of fractional Brownian motion
    Gripenberg, G.
    Norros, I.
    1996, (33)
  • [50] Simulation of fractional brownian motion
    Ruemelin, W.
    Proceedings of the IFIP Conference on Fractals in the Fundamental and Applied Sciences, 1991,