Periodic and quasi-periodic nonlinear photonic crystals - art. no. 66041A

被引:0
|
作者
Arie, Ady [1 ]
机构
[1] Tel Aviv Univ, Fac Engn, Dept Phys Elect, IL-69978 Tel Aviv, Israel
关键词
nonlinear optics; quasi phase matching; quasi crystals;
D O I
10.1117/12.726975
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Nonlinear photonic crystals are materials in which the second order susceptibility is modulated, while the linear susceptibility remains constant. In this paper, quasi-phase matching possibilities in several different nonlinear photonic crystals are analyzed and compared. A periodic one-dimensional structure is usually employed for phase matching a single process, but we show that two processes can also be simultaneously phase matched by non-collinear interaction. Two-dimensional periodic modulation provides additional extension of the phase matching possibilities. The dependence of the process conversion efficiency on the specific choice of lattice, nonlinear motif and quasi-phase-matched order is analyzed. Further extensions are provided by quasi-periodic schemes. A very powerful method for designing quasi-periodic nonlinear structures, with either one-dimensional or two-dimensional modulation, is the so-called dual-grid method. This method practically enables to phase matched any set of nonlinear interactions, in any chosen direction of propagation. Finally, frequency conversion using a converter with pure rotation symmetry is analyzed and demonstrated.
引用
收藏
页码:A6041 / A6041
页数:10
相关论文
共 50 条
  • [41] Quasi-periodic solutions for nonlinear wave equations
    Wang, Wei-Min
    [J]. COMPTES RENDUS MATHEMATIQUE, 2015, 353 (07) : 601 - 604
  • [42] QUASI-PERIODIC MOTIONS IN NONLINEAR VIBRATING SYSTEMS
    ROSEAU, M
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1978, 57 (01): : 21 - 68
  • [43] Unraveling light localization in quasi-periodic photonic lattices
    Zito, Gianluigi
    [J]. SCIENCE CHINA-CHEMISTRY, 2024, 67 (09) : 2787 - 2788
  • [44] Electromagnetic wave propagation in quasi-periodic photonic circuits
    El Boudouti, E. H.
    El Hassouani, Y.
    Aynaou, H.
    Djafari-Rouhani, B.
    Akjouj, A.
    Velasco, V. R.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2007, 19 (24)
  • [45] Self-Similarity Properties of Complex Quasi-Periodic Fibonacci and Cantor Photonic Crystals
    Augustyniak, Aleksander
    Zdanowicz, Mariusz
    Osuch, Tomasz
    [J]. PHOTONICS, 2021, 8 (12)
  • [46] Transmission properties of Fibonacci quasi-periodic one-dimensional superconducting photonic crystals
    Wu, Ji-jiang
    Gao, Jin-xia
    [J]. OPTIK, 2012, 123 (11): : 986 - 988
  • [47] Unraveling light localization in quasi-periodic photonic lattices
    Gianluigi Zito
    [J]. ScienceChina(Chemistry), 2024, 67 (09) : 2787 - 2788
  • [48] PERIODIC AND QUASI-PERIODIC VLF EMISSIONS
    SAZHIN, SS
    HAYAKAWA, M
    [J]. JOURNAL OF ATMOSPHERIC AND TERRESTRIAL PHYSICS, 1994, 56 (06): : 735 - 753
  • [49] TUNNELING IN PERIODIC AND QUASI-PERIODIC SUPERLATTICES
    SINGH, M
    TAO, ZC
    TONG, BY
    [J]. PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1992, 172 (02): : 583 - 596
  • [50] PERIODIC AND QUASI-PERIODIC LAGUERRE TILINGS
    SCHLOTTMANN, M
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1993, 7 (6-7): : 1351 - 1363