Control and readout of a superconducting qubit using a photonic link

被引:106
|
作者
Lecocq, F. [1 ,2 ]
Quinlan, F. [1 ]
Cicak, K. [1 ]
Aumentado, J. [1 ]
Diddams, S. A. [1 ,2 ]
Teufel, J. D. [1 ]
机构
[1] Natl Inst Stand & Technol, Boulder, CO 80305 USA
[2] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
关键词
D O I
10.1038/s41586-021-03268-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Delivering on the revolutionary promise of a universal quantum computer will require processors with millions of quantum bits (qubits)(1-3). In superconducting quantum processors(4), each qubit is individually addressed with microwave signal lines that connect room-temperature electronics to the cryogenic environment of the quantum circuit. The complexity and heat load associated with the multiple coaxial lines per qubit limits the maximum possible size of a processor to a few thousand qubits(5). Here we introduce a photonic link using an optical fibre to guide modulated laser light from room temperature to a cryogenic photodetector(6), capable of delivering shot-noise-limited microwave signals directly at millikelvin temperatures. By demonstrating high-fidelity control and readout of a superconducting qubit, we show that this photonic link can meet the stringent requirements of superconducting quantum information processing(7). Leveraging the low thermal conductivity and large intrinsic bandwidth of optical fibre enables the efficient and massively multiplexed delivery of coherent microwave control pulses, providing a path towards a million-qubit universal quantum computer.
引用
收藏
页码:575 / +
页数:14
相关论文
共 50 条
  • [21] Reducing the error rate of a superconducting logical qubit using analog readout information
    Ali, Hany
    Marques, Jorge
    Crawford, Ophelia
    Majaniemi, Joonas
    Serra-Peralta, Marc
    Byfield, David
    Varbanov, Boris
    Terhal, Barbara M.
    DiCarlo, Leonardo
    Campbell, Earl T.
    PHYSICAL REVIEW APPLIED, 2024, 22 (04):
  • [22] Model-Based Optimization of Superconducting Qubit Readout
    Bengtsson, Andreas
    Opremcak, Alex
    Khezri, Mostafa
    Sank, Daniel
    Bourassa, Alexandre
    Satzinger, Kevin J.
    Hong, Sabrina
    Erickson, Catherine
    Lester, Brian J.
    Miao, Kevin C.
    Korotkov, Alexander N.
    Kelly, Julian
    Chen, Zijun
    V. Klimov, Paul
    PHYSICAL REVIEW LETTERS, 2024, 132 (10)
  • [23] Improved Superconducting Qubit State Readout by Path Interference
    Wang, Zhiling
    Bao, Zenghui
    Wu, Yukai
    Li, Yan
    Ma, Cheng
    Cai, Tianqi
    Song, Yipu
    Zhang, Hongyi
    Duan, Luming
    CHINESE PHYSICS LETTERS, 2021, 38 (11)
  • [24] Superconducting tunable flux qubit with direct readout scheme
    Chiarello, F
    Carelli, P
    Castellano, MG
    Cosmelli, C
    Gangemi, L
    Leoni, R
    Poletto, S
    Simeone, D
    Torrioli, G
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2005, 18 (10): : 1370 - 1373
  • [25] Improved Superconducting Qubit State Readout by Path Interference
    王志凌
    鲍增晖
    吴宇恺
    李严
    马程
    蔡天奇
    宋祎璞
    张宏毅
    段路明
    Chinese Physics Letters, 2021, 38 (11) : 25 - 39
  • [26] Coherent control for qubit state readout
    Roman, Conrad
    Ransford, Anthony
    Ip, Michael
    Campbell, Wesley C.
    NEW JOURNAL OF PHYSICS, 2020, 22 (07):
  • [27] High-contrast dispersive readout of a superconducting flux qubit using a nonlinear resonator
    Lupascu, A
    Driessen, EFC
    Roschier, L
    Harmans, CJPM
    Mooij, JE
    PHYSICAL REVIEW LETTERS, 2006, 96 (12)
  • [28] Control and readout of a transmon using a compact superconducting resonator
    Zotova, Julia
    Sanduleanu, Shtefan
    Fedorov, Gleb
    Wang, Rui
    Tsai, Jaw Shen
    Astafiev, Oleg
    APPLIED PHYSICS LETTERS, 2024, 124 (10)
  • [29] Readout of superconducting flux qubit state with a Cooper pair box
    Kim, Mun Dae
    Moon, K.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2012, 24 (22)
  • [30] Readout-Induced Suppression and Enhancement of Superconducting Qubit Lifetimes
    Thorbeck, Ted
    Xiao, Zhihao
    Kamal, Archana
    Govia, Luke C. G.
    PHYSICAL REVIEW LETTERS, 2024, 132 (09)