Control and readout of a superconducting qubit using a photonic link

被引:106
|
作者
Lecocq, F. [1 ,2 ]
Quinlan, F. [1 ]
Cicak, K. [1 ]
Aumentado, J. [1 ]
Diddams, S. A. [1 ,2 ]
Teufel, J. D. [1 ]
机构
[1] Natl Inst Stand & Technol, Boulder, CO 80305 USA
[2] Univ Colorado, Dept Phys, Boulder, CO 80309 USA
关键词
D O I
10.1038/s41586-021-03268-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Delivering on the revolutionary promise of a universal quantum computer will require processors with millions of quantum bits (qubits)(1-3). In superconducting quantum processors(4), each qubit is individually addressed with microwave signal lines that connect room-temperature electronics to the cryogenic environment of the quantum circuit. The complexity and heat load associated with the multiple coaxial lines per qubit limits the maximum possible size of a processor to a few thousand qubits(5). Here we introduce a photonic link using an optical fibre to guide modulated laser light from room temperature to a cryogenic photodetector(6), capable of delivering shot-noise-limited microwave signals directly at millikelvin temperatures. By demonstrating high-fidelity control and readout of a superconducting qubit, we show that this photonic link can meet the stringent requirements of superconducting quantum information processing(7). Leveraging the low thermal conductivity and large intrinsic bandwidth of optical fibre enables the efficient and massively multiplexed delivery of coherent microwave control pulses, providing a path towards a million-qubit universal quantum computer.
引用
收藏
页码:575 / +
页数:14
相关论文
共 50 条
  • [1] Control and readout of a superconducting qubit using a photonic link
    F. Lecocq
    F. Quinlan
    K. Cicak
    J. Aumentado
    S. A. Diddams
    J. D. Teufel
    Nature, 2021, 591 : 575 - 579
  • [2] Scalable Cryoelectronics for Superconducting Qubit Control and Readout
    Ahmad, Meraj
    Giagkoulovits, Christos
    Danilin, Sergey
    Weides, Martin
    Heidari, Hadi
    ADVANCED INTELLIGENT SYSTEMS, 2022, 4 (09)
  • [3] Hardware for multi-superconducting qubit control and readout
    王战
    于海
    刘荣利
    马骁
    郭学仪
    相忠诚
    宋鹏涛
    苏鹭红
    金贻荣
    郑东宁
    Chinese Physics B, 2021, 30 (11) : 81 - 89
  • [4] Hardware for multi-superconducting qubit control and readout*
    Wang, Zhan
    Yu, Hai
    Liu, Rongli
    Ma, Xiao
    Guo, Xueyi
    Xiang, Zhongcheng
    Song, Pengtao
    Su, Luhong
    Jin, Yirong
    Zheng, Dongning
    CHINESE PHYSICS B, 2021, 30 (11)
  • [5] Fluxon Readout of a Superconducting Qubit
    Fedorov, Kirill G.
    Shcherbakova, Anastasia V.
    Wolf, Michael J.
    Beckmann, Detlef
    Ustinov, Alexey V.
    PHYSICAL REVIEW LETTERS, 2014, 112 (16)
  • [6] Approaching unit visibility for control of a superconducting qubit with dispersive readout
    Wallraff, A
    Schuster, DI
    Blais, A
    Frunzio, L
    Majer, J
    Devoret, MH
    Girvin, SM
    Schoelkopf, RJ
    PHYSICAL REVIEW LETTERS, 2005, 95 (06)
  • [7] High-Fidelity Cryogenic Photonic Link for the Readout of Superconducting Qubits
    Quinlan, Franklyn
    Diddams, Scott
    Lecocce, Florent
    Aumentado, Jose
    Teufel, John
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [8] Nondestructive readout for a superconducting flux qubit
    Lupascu, A
    Verwijs, CJM
    Schouten, RN
    Harmans, CJPM
    Mooij, JE
    PHYSICAL REVIEW LETTERS, 2004, 93 (17) : 177006 - 1
  • [9] Improved Superconducting Qubit Readout by Qubit-Induced Nonlinearities
    Boissonneault, Maxime
    Gambetta, J. M.
    Blais, Alexandre
    PHYSICAL REVIEW LETTERS, 2010, 105 (10)
  • [10] Single-shot readout of a superconducting qubit using a thermal detector
    Gunyho, Andras M.
    Kundu, Suman
    Ma, Jian
    Liu, Wei
    Niemela, Sakari
    Catto, Giacomo
    Vadimov, Vasilii
    Vesterinen, Visa
    Singh, Priyank
    Chen, Qiming
    Mottonen, Mikko
    NATURE ELECTRONICS, 2024, 7 (4) : 288 - 298