Perturbation solution of the fifth-order KdV equation for shallow-water solitary waves

被引:0
|
作者
Sachs, A [1 ]
机构
[1] Univ Massachusetts, Dept Phys & Appl Phys, Lowell, MA 01854 USA
关键词
D O I
10.1393/ncb/i2004-10073-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A perturbation expansion solution for a solitary-wave solution of the fifth-order Korteweg-de Vries equation for shallow-water waves is found to the first two orders in the small parameters. The perturbation solution agrees well with a.riumerical solution obtained by Sachs and Lee.
引用
收藏
页码:381 / 383
页数:3
相关论文
共 50 条
  • [21] On the fifth-order Stokes solution for steady water waves
    Zhao Hong-jun
    Song Zhi-yao
    Li Ling
    Kong Jun
    Wang Le-qiang
    Yang Jie
    [J]. CHINA OCEAN ENGINEERING, 2016, 30 (05) : 794 - 810
  • [22] Dynamics of bright solitary-waves in a general fifth-order shallow water-wave model
    Hong, WP
    [J]. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2004, 59 (4-5): : 257 - 265
  • [23] Solitons and periodic solutions for the fifth-order KdV equation
    Wazwaz, Abdul-Majid
    [J]. APPLIED MATHEMATICS LETTERS, 2006, 19 (11) : 1162 - 1167
  • [24] Modelling solitary waves of a fifth-order non-linear wave equation
    Geyikli, Turabi
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2007, 84 (07) : 1079 - 1087
  • [25] Fifth-order perturbation solution to DSGE models
    Levintal, Oren
    [J]. JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2017, 80 : 1 - 16
  • [26] QUASI-PERIODIC SOLUTION OF QUASI-LINEAR FIFTH-ORDER KDV EQUATION
    Sun, Yingte
    Yuan, Xiaoping
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (12) : 6241 - 6285
  • [27] Perturbation Solution for the 2D Shallow-water Waves
    Christov, C. I.
    Todorov, M. D.
    Christou, M. A.
    [J]. APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES: 3RD INTERNATIONAL CONFERENCE - AMITANS'11, 2011, 1404
  • [28] Hybrid soliton, breather waves and solution molecules of the (2+1)-dimensional generalized fifth-order KdV equation
    Ma, Hongcai
    Qi, Xinru
    Deng, Aiping
    [J]. MODERN PHYSICS LETTERS B, 2024,
  • [29] Integrability and wave solutions for fifth-order KdV type equation
    Gaber, A. A.
    [J]. INTERNATIONAL JOURNAL OF ADVANCED AND APPLIED SCIENCES, 2020, 7 (04): : 103 - 106
  • [30] STABILITY OF SOLITARY WAVES IN SHALLOW-WATER
    BERRYMAN, JG
    [J]. PHYSICS OF FLUIDS, 1976, 19 (06) : 771 - 777