Plasmonic fiber-optic vector magnetometer

被引:75
|
作者
Zhang, Zhaochuan [1 ]
Guo, Tuan [1 ]
Zhang, Xuejun [1 ]
Xu, Jian [1 ]
Xie, Wenping [2 ]
Nie, Ming [2 ]
Wu, Qiang [3 ]
Guan, Bai-Ou [1 ]
Albert, Jacques [4 ]
机构
[1] Jinan Univ, Inst Photon Technol, Guangzhou 510632, Guangdong, Peoples R China
[2] Guangdong Power Grid Co Ltd, Elect Power Res Inst, Guangzhou 510080, Guangdong, Peoples R China
[3] Northumbria Univ, Dept Phys & Elect Engn, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England
[4] Carleton Univ, Dept Elect, 1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
MAGNETIC-FIELD SENSOR; FABRY-PEROT SENSOR; FLUID; FERROFLUID; ORIGIN; TAPER;
D O I
10.1063/1.4943623
中图分类号
O59 [应用物理学];
学科分类号
摘要
A compact fiber-optic vector magnetometer based on directional scattering between polarized plasmon waves and ferro-magnetic nanoparticles is demonstrated. The sensor configuration reported in this work uses a short section of tilted fiber Bragg grating (TFBG) coated with a nanometer scale gold film and packaged with a magnetic fluid (Fe3O4) inside a capillary. The transmission spectrum of the sensor provides a fine comb of narrowband resonances that overlap with a broader absorption of the surface plasmon resonance (SPR). The wavelength of the SPR attenuation in transmission shows high sensitivity to slight perturbations by magnetic fields, due to the strong directional scattering between the SPR attenuated cladding modes and the magnetic fluid near the fiber surface. Both the orientation (2 nm/deg) and the intensity (1.8 nm/mT) of magnetic fields can be determined unambiguously from the TFBG spectrum. Temperature cross sensitivity can be referenced out by monitoring the wavelength of the core mode resonance simultaneously. (C) 2016 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Fiber-optic sensing
    Baylor, L
    Nave, S
    [J]. MEASUREMENTS & CONTROL, 1996, (180): : 93 - 97
  • [42] Fiber-optic sensors
    Failes, M
    Zimmer, BJ
    [J]. MEASUREMENTS & CONTROL, 2000, (198): : 69 - 72
  • [43] Fiber-optic spanner
    Black, Bryan J.
    Mohanty, Samarendra K.
    [J]. OPTICS LETTERS, 2012, 37 (24) : 5030 - 5032
  • [44] Fiber-Optic Ocean
    Samanci, Ozge
    Snyder, Adam
    Caniglia, Gabriel
    [J]. ACM SIGGRAPH 2019 ART GALLERY (SIGGRAPH '19), 2019, : 406 - 407
  • [45] FIBER-OPTIC MICRODENSITOMETER
    KUSHELEVSKY, AP
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 1976, 21 (02): : 298 - 299
  • [46] FIBER-OPTIC VIBROMETER
    MARTINELLI, M
    CESERANI, A
    POLINI, M
    [J]. PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS, 1984, 514 : 403 - 414
  • [47] FIBER-OPTIC COMPONENTS
    ORMOND, T
    [J]. EDN MAGAZINE-ELECTRICAL DESIGN NEWS, 1983, 28 (10): : 113 - &
  • [48] Fiber-Optic Seismology
    Lindsey, Nathaniel J.
    Martin, Eileen R.
    [J]. ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES, VOL 49, 2021, 2021, 49 : 309 - 336
  • [49] THE FIBER-OPTIC WARS
    VALENTINI, RM
    [J]. FORTUNE, 1989, 119 (06) : 146 - 146
  • [50] Fiber-optic microcable
    Dombrowski, JH
    [J]. SEA TECHNOLOGY, 1998, 39 (07) : 25 - +