Logarithmic geometry and the Milnor fibration

被引:2
|
作者
Cauwbergs, Thomas [1 ]
机构
[1] Dept Math, Sect Algebra, Celestijnenlaan 200b,Box 2400, B-3001 Leuven, Belgium
关键词
D O I
10.1016/j.crma.2016.04.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Inspired by a description of the logarithmic space of Kato and Nakayama in terms of real oriented blowups, we describe Milnor fibrations and related constructions used by A'Campo in the language of logarithmic geometry. (C) 2016 Academie des sciences. Published by Elsevier Masson SAS. Allrightsreserved.
引用
收藏
页码:701 / 706
页数:6
相关论文
共 50 条
  • [21] ON MILNOR FIBRATION AT INFINITY FOR A POLYNOMIAL OF 2 COMPLEX-VARIABLES
    VUI, HH
    LEANH, N
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1989, 309 (03): : 183 - 186
  • [22] Thom property and Milnor-Le fibration for analytic maps
    Menegon, Aurelio
    [J]. MATHEMATISCHE NACHRICHTEN, 2023, 296 (08) : 3481 - 3491
  • [23] Dirac Geometry of the Holonomy Fibration
    Cabrera, Alejandro
    Gualtieri, M.
    Meinrenken, E.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 355 (03) : 865 - 904
  • [24] On the Topology of the Milnor-Le Fibration for Functions of Three Real Variables
    Menegon, Aurelio
    Marques-Silva, Camila S.
    [J]. BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2022, 53 (02): : 461 - 477
  • [25] Dirac Geometry of the Holonomy Fibration
    Alejandro Cabrera
    M. Gualtieri
    E. Meinrenken
    [J]. Communications in Mathematical Physics, 2017, 355 : 865 - 904
  • [26] The spectral geometry of the Hopf fibration
    Gilkey, PB
    Leahy, JV
    Park, JH
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (17): : 5645 - 5656
  • [27] The Milnor fibration of a hyperplane arrangement: from modular resonance to algebraic monodromy
    Papadima, Stefan
    Suciu, Alexander I.
    [J]. PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2017, 114 : 961 - 1004
  • [28] On the Milnor fibration for f (z) (g)over-bar(z)
    Oka, Mutsuo
    [J]. EUROPEAN JOURNAL OF MATHEMATICS, 2020, 6 (03) : 998 - 1019
  • [29] ON MILNOR'S FIBRATION THEOREM AND ITS OFFSPRING AFTER 50 YEARS
    Seade, Jose
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 56 (02) : 281 - 348
  • [30] On the Topology of the Milnor-Lê Fibration for Functions of Three Real Variables
    Aurélio Menegon
    Camila S. Marques-Silva
    [J]. Bulletin of the Brazilian Mathematical Society, New Series, 2022, 53 : 461 - 477