Accurate Flexible Temperature Sensor Based on Laser-Induced Graphene Material

被引:23
|
作者
Kun, Huang [1 ,2 ]
Bin, Liu [2 ]
Orban, Mostafa [1 ,2 ,3 ]
Qiu Donghai [2 ]
Yang Hongbo [1 ,2 ]
机构
[1] Univ Sci & Technol China, Hefei 230000, Anhui, Peoples R China
[2] Chinese Acad Sci, Suzhou Inst Biomed Engn & Technol, Suzhou 215004, Jiangsu, Peoples R China
[3] Benha Univ, Sch Mech Engn, Shoubra Fac Engn, Banha, Egypt
基金
国家重点研发计划;
关键词
D O I
10.1155/2021/9938010
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Body temperature is an essential physiological index reflecting human health. Accurate measurements of body temperature play a vital role in the diagnosis and treatment of diseases. In this paper, a temperature sensor manufactured by laser-induced graphene is introduced. This sensor has high measurement accuracy, simple preparation, and low production cost. The sensor is made of laser-induced graphene and is easier to fabricate and operate than traditional thermal resistance sensors. The sensor is of high accuracy, is easy to manufacture, and is of low cost. The sensor has high accuracy and is linear between 30 degrees C and 40 degrees C in the human body temperature ranges. Laser-induced graphene (LIG) sensor's resistance value is correlated linearly with the temperature value, and compared with the infrared thermometer, the accuracy of the sensor is +/- 0.15 degrees C while that of the infrared thermometer is +/- 0.30 degrees C. The sensitivity of the LIG sensor is -0.04145%degrees C-1.
引用
下载
收藏
页数:7
相关论文
共 50 条
  • [41] Paper-based laser-induced graphene for sustainable and flexible microsupercapacitor applications
    Coelho, Joao
    Correia, Ricardo F.
    Silvestre, Sara
    Pinheiro, Tomas
    Marques, Ana C.
    Correia, M. Rosario P.
    Pinto, Joana Vaz
    Fortunato, Elvira
    Martins, Rodrigo
    MICROCHIMICA ACTA, 2023, 190 (01)
  • [42] Flexible Temperature Sensor with Laser Scribed Graphene Oxide
    Kazemzadeh, Rouzbeh
    Kim, Woo Soo
    2014 IEEE 14TH INTERNATIONAL CONFERENCE ON NANOTECHNOLOGY (IEEE-NANO), 2014, : 420 - 423
  • [43] Preparation of Laser-Induced Graphene Fabric from Silk and Its Application Examples for Flexible Sensor
    Li, Zehong
    Lu, Longsheng
    Xie, Yingxi
    Wang, Wentao
    Lin, Zhiran
    Tang, Biao
    Lin, Na
    ADVANCED ENGINEERING MATERIALS, 2021, 23 (09)
  • [44] Application of Laser-Induced Graphene Flexible Sensor in Monitoring Large Deformation of Reinforced Concrete Structure
    Liu, Lina
    Cai, Chenning
    Qian, Zhenghua
    Li, Peng
    Zhu, Feng
    Sensors, 2024, 24 (23)
  • [45] Infrared Laser-Induced Graphene Sensor for Tyrosine Detection
    Matias, Tiago A.
    Rocha, Raquel G.
    Faria, Lucas, V
    Richter, Eduardo M.
    Munoz, Rodrigo A. A.
    CHEMELECTROCHEM, 2022, 9 (14)
  • [46] A highly flexible and selective dopamine sensor based on Pt-Au nanoparticle-modified laser-induced graphene
    Hui, Xue
    Xuan, Xing
    Kim, Jiyoung
    Park, Jae Yeong
    ELECTROCHIMICA ACTA, 2019, 328
  • [47] A flexible virtual sensor array based on laser-induced graphene and MXene for detecting volatile organic compounds in human breath
    Li, Dongsheng
    Shao, Yuzhou
    Zhang, Qian
    Qu, Mengjiao
    Ping, Jianfeng
    Fu, YongQing
    Xie, Jin
    ANALYST, 2021, 146 (18) : 5704 - 5713
  • [48] Laser induced graphene based high-accurate temperature sensor with thermal meta-shell encirclement
    Hou, Maoxiang
    Wen, Guanhai
    Chen, Jintao
    Xie, Bin
    Yan, Lu
    Chen, Yun
    Chen, Xin
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2023, 217
  • [49] Laser-Induced Graphene Printed Wearable Flexible Antenna-Based Strain Sensor for Wireless Human Motion Monitoring
    Sindhu, Battina
    Kothuru, Avinash
    Sahatiya, Parikshit
    Goel, Sanket
    Nandi, Sourav
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (07) : 3189 - 3194
  • [50] A Flexible Wearable Strain Sensor Based on Nano-Silver-Modified Laser-Induced Graphene for Monitoring Hand Movements
    Zhong, Mian
    Zou, Yao
    Fan, Hongyun
    Li, Shichen
    Zhao, Yilin
    Li, Bin
    Li, Bo
    Jiang, Yong
    Xing, Xiaoqing
    Shen, Jiaqing
    Zhou, Chao
    MICROMACHINES, 2024, 15 (08)