Analysis of non-linear Klein-Gordon equations using Lie symmetry

被引:22
|
作者
Khalique, Chaudry Masood [1 ]
Biswas, Anjan [1 ]
机构
[1] North West Univ, Int Inst Symmetry Anal & Math Modeling, Dept Math Sci, ZA-2735 Mmabatho, South Africa
关键词
Integrability; Lie symmetry;
D O I
10.1016/j.aml.2010.07.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work obtains the stationary solutions of the non-linear Klein-Gordon equations in 1 + 1 dimensions. The technique that is used to carry out the analysis is the Lie symmetry approach. There are five types of non-linearity that are studied in this work. In each case, the analysis yields non-trivial stationary solutions; it is the first time that this has been seen. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1397 / 1400
页数:4
相关论文
共 50 条
  • [31] Noether Symmetry Analysis of the Klein-Gordon and Wave Equations in Bianchi I Spacetime
    Camci, Ugur
    [J]. SYMMETRY-BASEL, 2024, 16 (01):
  • [32] Symmetry analysis of (2+1)-dimensional nonlinear Klein-Gordon equations
    Tang, XY
    Lou, SY
    [J]. CHINESE PHYSICS LETTERS, 2002, 19 (01) : 1 - 3
  • [33] PROBLEM OF A SYMMETRY OF HAMILTON-YACKOBY AND KLEIN-GORDON EQUATIONS
    NAIMINOV, AL
    SHAPOVALOV, VN
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1974, (04): : 146 - 147
  • [34] Breaking symmetry in focusing nonlinear Klein-Gordon equations with potential
    Georgiev, Vladimir
    Lucente, Sandra
    [J]. JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2018, 15 (04) : 755 - 788
  • [35] Investigation of Analytical Soliton Solutions to the Non-Linear Klein-Gordon Model Using Efficient Techniques
    Vivas-Cortez, Miguel
    Nageen, Maham
    Abbas, Muhammad
    Alosaimi, Moataz
    [J]. SYMMETRY-BASEL, 2024, 16 (08):
  • [36] EVOLUTION TIME KLEIN-GORDON EQUATION AND DERIVATION OF ITS NON-LINEAR COUNTERPART
    KALOYEROU, PN
    VIGIER, JP
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (06): : 663 - 673
  • [37] LIE AND NOETHER SYMMETRY GROUPS OF NON-LINEAR EQUATIONS
    RAY, JR
    REID, JL
    CULLEN, JJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (11): : L575 - L577
  • [38] ON COMPACTNESS AND A VARIATIONAL PRINCIPLE FOR STATIONARY STATES OF A NON-LINEAR KLEIN-GORDON EQUATION
    MORRIS, TF
    [J]. HADRONIC JOURNAL, 1981, 5 (01): : 152 - 162
  • [39] The geometric origin of Lie point symmetries of the Schrodinger and the Klein-Gordon equations
    Paliathanasis, Andronikos
    Tsamparlis, Michael
    [J]. INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2014, 11 (04)
  • [40] Scattering below the ground state for the 2D non-linear Schrodinger and Klein-Gordon equations revisited
    Guo, Zihua
    Shen, Jia
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (08)