Metal-Organic Frameworks and Metal-Organic Gels for Oxygen Electrocatalysis: Structural and Compositional Considerations

被引:74
|
作者
Wang, Hao [1 ]
Chen, Biao-Hua [2 ]
Liu, Di-Jia [1 ,3 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[2] Beijing Univ Technol, Coll Environm & Energy Engn, Beijing 100124, Peoples R China
[3] Univ Chicago, Pritzker Sch Mol Engn, Chicago, IL 60637 USA
关键词
electrocatalysis; metal– organic frameworks; organic gels; oxygen evolution reaction; oxygen reduction reaction; DOPED POROUS CARBONS; EFFICIENT BIFUNCTIONAL ELECTROCATALYSTS; ELECTROCHEMICAL WATER OXIDATION; FUEL-CELL TECHNOLOGIES; PRUSSIAN BLUE ANALOGS; HIGH-PERFORMANCE; REDUCTION REACTION; EVOLUTION REACTION; IMIDAZOLATE FRAMEWORK; GRAPHITIC CARBON;
D O I
10.1002/adma.202008023
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Increasing demand for sustainable and clean energy is calling for the next-generation energy conversion and storage technologies such as fuel cells, water electrolyzers, CO2/N-2 reduction electrolyzers, metal-air batteries, etc. All these electrochemical processes involve oxygen electrocatalysis. Boosting the intrinsic activity and the active-site density through rational design of metal-organic frameworks (MOFs) and metal-organic gels (MOGs) as precursors represents a new approach toward improving oxygen electrocatalysis efficiency. MOFs/MOGs afford a broad selection of combinations between metal nodes and organic linkers and are known to produce electrocatalysts with high surface areas, variable porosity, and excellent activity after pyrolysis. Some recent studies on MOFs/MOGs for oxygen electrocatalysis and their new perspectives in synthesis, characterization, and performance are discussed. New insights on the structural and compositional design in MOF/MOG-derived oxygen electrocatalysts are summarized. Critical challenges and future research directions are also outlined.
引用
收藏
页数:41
相关论文
共 50 条
  • [41] Metal-organic frameworks: the pressure is on
    Coudert, Francois-Xavier
    [J]. ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE CRYSTAL ENGINEERING AND MATERIALS, 2015, 71 : 585 - 586
  • [42] Metal-Organic Frameworks in Motion
    Terzopoulou, Anastasia
    Nicholas, James D.
    Chen, Xiang-Zhong
    Nelson, Bradley J.
    Pane, Salvador
    Puigmarti-Luis, Josep
    [J]. CHEMICAL REVIEWS, 2020, 120 (20) : 11175 - 11193
  • [43] Flexible metal-organic frameworks
    Schneemann, A.
    Bon, V.
    Schwedler, I.
    Senkovska, I.
    Kaskel, S.
    Fischer, R. A.
    [J]. CHEMICAL SOCIETY REVIEWS, 2014, 43 (16) : 6062 - 6096
  • [44] Metal-Organic Frameworks and Their Applications
    Bharadwaj, Parimal Kanti
    Feng, Pingyun
    Kaskel, Stefan
    Xu, Qiang
    [J]. CHEMISTRY-AN ASIAN JOURNAL, 2019, 14 (20) : 3450 - 3451
  • [45] Introduction to Metal-Organic Frameworks
    Zhou, Hong-Cai
    Long, Jeffrey R.
    Yaghi, Omar M.
    [J]. CHEMICAL REVIEWS, 2012, 112 (02) : 673 - 674
  • [46] Lanthanide metal-organic frameworks
    Borovkov, Victor
    [J]. FRONTIERS IN CHEMISTRY, 2015, 3
  • [47] Multicomponent Metal-Organic Frameworks
    Telfer, Shane
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2017, 73 : C51 - C51
  • [48] Liquid metal-organic frameworks
    Gaillac, Romain
    Pullumbi, Pluton
    Beyer, Kevin A.
    Chapman, Karena W.
    Keen, David A.
    Bennett, Thomas D.
    Coudert, Francois-Xavier
    [J]. NATURE MATERIALS, 2017, 16 (11) : 1149 - +
  • [49] Interpenetrating metal-organic frameworks
    Gong, Yun-Nan
    Zhong, Di-Chang
    Lu, Tong-Bu
    [J]. CRYSTENGCOMM, 2016, 18 (15): : 2596 - 2606
  • [50] Hydrophobic Metal-Organic Frameworks
    Joyaramulu, Kolleboyina
    Geyer, Florian
    Schneemann, Andreas
    Kment, Stepan
    Otyepka, Michal
    Zboril, Radek
    Vollmer, Doris
    Fischer, Roland A.
    [J]. ADVANCED MATERIALS, 2019, 31 (32)