Progress of air-breathing cathode in microbial fuel cells

被引:95
|
作者
Wang, Zejie [1 ]
Mahadevan, Gurumurthy Dummi [2 ]
Wu, Yicheng [3 ]
Zhao, Feng [2 ]
机构
[1] Qilu Univ Technol, Sch Environm Sci & Engn, Jinan 250353, Peoples R China
[2] Chinese Acad Sci, Inst Urban Environm, CAS Key Lab Urban Pollutant Convers, Xiamen 361021, Peoples R China
[3] Xiamen Univ Technol, Coll Environm Sci & Engn, Xiamen 361024, Peoples R China
基金
中国国家自然科学基金;
关键词
Microbial fuel cell; Air-diffusion layer; ORR catalyst; Electrode; Power generation; OXYGEN REDUCTION REACTION; ROLLING ACTIVATED CARBON; METAL-FREE CATALYST; DOPED CARBON; POWER-GENERATION; DIFFUSION LAYERS; LOW-COST; NICKEL FOAM; PERFORMANCE; NITROGEN;
D O I
10.1016/j.jpowsour.2017.02.004
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Microbial fuel cell (MFC) is an emerging technology to produce green energy and vanquish the effects of environmental contaminants. Cathodic reactions are vital for high electrical power density generated from MFCs. Recently tremendous attentions were paid towards developing high performance air breathing cathodes. A typical air-breathing cathode comprises of electrode substrate, catalyst layer, and air-diffusion layer. Prior researches demonstrated that each component influenced the performance of air-breathing cathode MFCs. This review summarized the progress in development of the individual component and elaborated main factors to the performance of air-breathing cathode. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:245 / 255
页数:11
相关论文
共 50 条
  • [21] Species-electrochemical Modeling of an air-breathing cathode of a planar fuel cell
    Hwang, J. J.
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2006, 153 (08) : A1584 - A1590
  • [22] Mass Transports in an Air-Breathing Cathode of a Proton Exchange Membrane Fuel Cell
    Hwang, J. J.
    Chang, W. R.
    Chao, C. H.
    Weng, F. B.
    Su, A.
    [J]. JOURNAL OF FUEL CELL SCIENCE AND TECHNOLOGY, 2009, 6 (04): : 0410031 - 0410037
  • [23] Pore-scale modeling of mass transport in the air-breathing cathode of membraneless microfluidic fuel cells
    Fu, Ya-lu
    Zhang, Biao
    Zhu, Xun
    Ye, Ding-ding
    Sui, Pang-Chieh
    Djilali, Ned
    Liao, Qiang
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2022, 188
  • [24] Effect of cathode channel dimensions on the performance of an air-breathing PEM fuel cell
    Kumar, P. Manoj
    Kolar, Ajit Kumar
    [J]. INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2010, 49 (05) : 844 - 857
  • [25] Theoretical performance analysis of microstructured air-breathing fuel cells
    Litster, S.
    Djilali, N.
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (01) : B1 - B5
  • [26] Progress in air-breathing hypersonic technology
    Le, Jia-Ling
    [J]. Tuijin Jishu/Journal of Propulsion Technology, 2010, 31 (06): : 641 - 649
  • [27] An efficient mathematical model for air-breathing PEM fuel cells
    Ismail, M. S.
    Ingham, D. B.
    Hughes, K. J.
    Ma, L.
    Pourkashanian, M.
    [J]. APPLIED ENERGY, 2014, 135 : 490 - 503
  • [28] Characteristic behaviors on air-breathing direct methanol fuel cells
    Chang, Ikwhang
    Lee, Minhwan
    Cha, Suk Won
    [J]. INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2012, 13 (07) : 1141 - 1144
  • [29] A Numerical Study on the Performance of Air-breathing Microfluidic Fuel Cells
    Herlambang, Yusuf D.
    Shyu, Jin-Cherng
    Lee, Shun-Ching
    [J]. 2017 IEEE 12TH INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS (NEMS), 2017, : 503 - 508
  • [30] Air-breathing fuel cells fed with dimethoxymethane (DMM) vapor
    Kim, Jin-Ho
    Kang, Yong-Mook
    Kim, Hae-Kyoung
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (09) : 1145 - 1148