Classical/quantum integrability in non-compact sector of AdS/CFT

被引:0
|
作者
Kazakov, VA [1 ]
Zarembo, K
机构
[1] Univ Paris 06, Ecole Normale Super, Phys Theor Lab, F-75231 Paris, France
[2] Uppsala Univ, Inst Teoret Fys, SE-75108 Uppsala, Sweden
[3] Inst Theoret & Expt Phys, Moscow 117259, Russia
来源
关键词
1/N expansion; AdS-CFT and dS-CFT correspondence; Bethe Ansatz;
D O I
暂无
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We discuss non-compact SL(2,R) sectors in N=4 SYM and in AdS string theory and compare their integrable structures. We formulate and solve the Riemann-Hilbert problem for the finite gap solutions of the classical sigma model and show that at one loop it is identical to the classical limit of Bethe equations of the spin (-1/2) chain for the dilatation operator of SYM.
引用
收藏
页数:23
相关论文
共 50 条
  • [31] A large spin limit of strings on AdS5 X S5 in a non-compact sector
    Sakai, Kazuhiro
    Satoh, Yuji
    PHYSICS LETTERS B, 2007, 645 (2-3) : 293 - 298
  • [32] Loop quantum gravity on non-compact spaces
    Arnsdorf, M
    Gupta, S
    NUCLEAR PHYSICS B, 2000, 577 (03) : 529 - 546
  • [33] Large winding sector of AdS/CFT
    Hayashi, Hirotaka
    Okamura, Keisuke
    Suzuki, Ryo
    Vicedo, Benoit
    JOURNAL OF HIGH ENERGY PHYSICS, 2007, (11):
  • [34] Special Volume: Review on AdS/CFT Integrability Preface
    Beisert, Niklas
    LETTERS IN MATHEMATICAL PHYSICS, 2012, 99 (1-3) : 1 - 2
  • [35] Examples of non-compact quantum group actions
    Soltan, Piotr Mikolaj
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 372 (01) : 224 - 236
  • [36] The Non-Compact Quantum Dilogarithm and the Baxter Equations
    R. M. Kashaev
    Journal of Statistical Physics, 2001, 102 : 923 - 936
  • [37] Large winding sector of AdS/CFT
    Hayashi, Hirotaka
    Okamura, Keisuke
    Suzuki, Ryo
    Vicedo, Benoit
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2008, 23 (14-15): : 2241 - 2242
  • [38] The SU(2) sector in AdS/CFT
    Minahan, JA
    FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 2005, 53 (7-8): : 828 - 838
  • [39] NON-COMPACT SYMMETRY GROUP OF A QUANTUM OSCILLATOR
    SANNIKOV, SS
    SOVIET PHYSICS JETP-USSR, 1966, 22 (06): : 1306 - &
  • [40] The non-compact quantum dilogarithm and the Baxter equations
    Kashaev, RM
    JOURNAL OF STATISTICAL PHYSICS, 2001, 102 (3-4) : 923 - 936