TWO-SIDED MULTIPLICATION OPERATORS ON THE SPACE OF REGULAR OPERATORS

被引:1
|
作者
Chen, Jin Xi [1 ]
Schep, Anton R. [2 ]
机构
[1] Southwest Jiaotong Univ, Dept Math, Chengdu 610031, Peoples R China
[2] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
关键词
Regular operator; two-sided multiplication operator; Riesz space; Banach latticed;
D O I
10.1090/proc/12893
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let W, X, Y and Z be Dedekind complete Riesz spaces. For A is an element of L-r(Y, Z) and B is an element of L-r(W, X) let M-A,M- (B) be the two-sided multiplication operator from L-r(X, Y) into L-r(W, Z) defined by M-A,M- B(T) = ATB. We show that for every 0 <= A(0) is an element of L-n(r) (Y, Z), broken vertical bar M-A0,M- B broken vertical bar (T) = M-A0, (broken vertical bar B|) (T) holds for all B is an element of L-r(W, X) and all T is an element of L-n(r) (X, Y). Furthermore, if W, X, Y and Z are Dedekind complete Banach lattices such that X and Y have order continuous norms, then broken vertical bar M-A,M- B broken vertical bar = M broken vertical bar A broken vertical bar, |broken vertical bar B broken vertical bar for all A is an element of L-r(Y, Z) and all B is an element of L-r(W, X). Our results generalize the related results of Synnatzschke and Wickstead, respectively.
引用
收藏
页码:2495 / 2501
页数:7
相关论文
共 50 条
  • [21] Local two-sided bounds for eigenvalues of self-adjoint operators
    G. R. Barrenechea
    L. Boulton
    N. Boussaïd
    [J]. Numerische Mathematik, 2017, 135 : 953 - 986
  • [22] Local two-sided bounds for eigenvalues of self-adjoint operators
    Barrenechea, G. R.
    Boulton, L.
    Boussaid, N.
    [J]. NUMERISCHE MATHEMATIK, 2017, 135 (04) : 953 - 986
  • [23] Two-sided estimates of the approximation numbers of certain Volterra integral operators
    Edmunds, DE
    Evans, WD
    Harris, DJ
    [J]. STUDIA MATHEMATICA, 1997, 124 (01) : 59 - 80
  • [24] Necessary and Sufficient Conditions for the Invertibility of Piecewise-Autonomous Difference Operators in the Space of Bounded Two-Sided Sequences
    Slyusarchuk V.Y.
    [J]. Journal of Mathematical Sciences, 2021, 256 (5) : 663 - 688
  • [25] TWO-SIDED HEAT KERNEL ESTIMATES FOR SCHRÖDINGER OPERATORS WITH UNBOUNDED POTENTIALS
    Chen, Xin
    Wang, Jian
    [J]. ANNALS OF PROBABILITY, 2024, 52 (03): : 1016 - 1047
  • [26] Decomposition of the Space of Regular Operators
    Beg I.
    Popovici I.M.
    Danet R.M.
    [J]. Results in Mathematics, 1997, 32 (3-4) : 281 - 284
  • [27] Multiplication Operators on the Bergman Space Introduction
    Guo, Kunyu
    Huang, Hansong
    [J]. MULTIPLICATION OPERATORS ON THE BERGMAN SPACE, 2015, 2145 : 1 - 6
  • [28] Multiplication Operators on the Lipschitz Space of a Tree
    Colonna, Flavia
    Easley, Glenn R.
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 68 (03) : 391 - 411
  • [29] Multiplication Operators on the Bergman Space Preface
    Guo, Kunyu
    Huang, Hansong
    [J]. MULTIPLICATION OPERATORS ON THE BERGMAN SPACE, 2015, 2145 : V - +
  • [30] Multiplication Operators on the Lipschitz Space of a Tree
    Flavia Colonna
    Glenn R. Easley
    [J]. Integral Equations and Operator Theory, 2010, 68 : 391 - 411