Anomalous Confined Diffusion of Nanoparticles in Polymer Solutions

被引:0
|
作者
Zheng, Ping [1 ]
Xue, Chun-Dong [1 ]
Qin, Kai-Rong [1 ]
机构
[1] Dalian Univ Technol, Sch Optoelect Engn & Instrumentat Sci, Dalian 116024, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
BROWNIAN DIFFUSION; MOTION; SEMIDILUTE; DYNAMICS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nanoparticle diffusion in complex physiological media plays an important role in the processes of life evolution, information transmission and drug delivery. Different from the classical Brownian motion in the pure fluids, the diffusion in physiological media is often confined and shows anomalous behavior. In this study, we experimentally study the confined diffusion of nanoparticles in polyethylene oxide solutions based on particle tracking method. By inspecting the ensemble-averaged mean square displacement, the non-Gaussian parameter and the displacement probability density, the anomalies are identified as the sub-diffusive behavior at short times and the non-Gaussianity at long times. The time-averaged mean square displacement and the ergodicity breaking parameters are then examined, and the origin of the non-Gaussian anomaly at long times are elucidated as the non-ergodicity. The present results offer us a more comprehensive understanding of anomalous confined diffusion in complex media and may provide theoretical guidance for regulating drug delivery and optimizing drug design.
引用
收藏
页码:1523 / 1528
页数:6
相关论文
共 50 条
  • [31] ANOMALOUS POLYMER DIFFUSION IN 2 DIMENSIONS
    BAUMGARTNER, A
    [J]. EUROPHYSICS LETTERS, 1987, 4 (11): : 1221 - 1225
  • [32] DIFFUSION IN POLYMER SOLUTIONS
    LI, SU
    GAINER, JL
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY FUNDAMENTALS, 1968, 7 (03): : 433 - &
  • [33] Anomalous spectral diffusion in polymer glasses
    Khodykin, OV
    Muller, J
    Kharlamov, BM
    Haarer, D
    [J]. EUROPHYSICS LETTERS, 1998, 44 (01): : 68 - 73
  • [34] Compression of Nanoslit Confined Polymer Solutions
    Qi, Yue
    Zeng, Lili
    Khorshid, Ahmed
    Hill, Reghan J.
    Reisner, Walter W.
    [J]. MACROMOLECULES, 2018, 51 (02) : 617 - 625
  • [35] Simulations of polymer solutions in confined geometries
    Usta, O. Berk
    Butler, Jason E.
    Ladd, A. J. C.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [36] Dynamics of confined flowing polymer solutions
    Hernandez-Ortiz, Juan P.
    Ma, Hongbo
    de Pablo, Juan J.
    Graham, Michael D.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231
  • [37] Anomalous water diffusion in salt solutions
    Ding, Yun
    Hassanali, Ali A.
    Parrinello, Michele
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (09) : 3310 - 3315
  • [38] Lie symmetry solutions for anomalous diffusion
    Abraham-Shrauner, B
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (12): : 2547 - 2553
  • [39] Fractional nonlinear diffusion equation, solutions and anomalous diffusion
    Silva, A. T.
    Lenzi, E. K.
    Evangelista, L. R.
    Lenzi, M. K.
    da Silva, L. R.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 375 (01) : 65 - 71
  • [40] Anomalous diffusion of quinone in salt solutions
    Freundlich, H
    Kruger, D
    [J]. JOURNAL OF PHYSICAL CHEMISTRY, 1939, 43 (08): : 981 - 988