Remote sensing image classification using extreme learning machine-guided collaborative coding

被引:2
|
作者
Yang, Chunwei [1 ,2 ]
Liu, Huaping [2 ]
Wang, Shicheng [1 ]
Liao, Shouyi [1 ]
机构
[1] High Tech Inst Xian, Xian 710025, Shaanxi, Peoples R China
[2] Tsinghua Univ, Dept Comp Sci & Technol, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Extreme learning machine; Collaborative coding; Covariance descriptor; SPARSE REPRESENTATION; RECOGNITION; APPROXIMATION; OPTIMIZATION; NETWORKS; KERNELS;
D O I
10.1007/s11045-016-0403-6
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Remote sensing image classification is a very challenging problem and covariance descriptor can be introduced in the feature extraction and representation process for remote sensing image. However, due to the reason that covariance descriptor lies in non-Euclidean manifold, conventional extreme learning machine (ELM) cannot effectively deal with this problem. In this paper, we propose an improved ELM framework which incorporates the collaborative coding to tackle the covariance descriptor classification problem. First, a new ELM-guided dictionary learning and coding model is proposed. Then the iterative optimization algorithm is developed to solve the model. By evaluating the proposed approach on the UCMERCED high-resolution aerial image dataset, we show the effectiveness of the proposed strategy.
引用
收藏
页码:835 / 850
页数:16
相关论文
共 50 条
  • [21] A Review on Image Classification of Remote Sensing Using Deep Learning
    Yao, Chuchu
    Luo, Xianxian
    Zhao, Yudan
    Zeng, Wei
    Chen, Xiaoyu
    PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2017, : 1947 - 1955
  • [22] Collaborative Segmentation and Classification for remote sensing image analysis
    Troya-Galvis, Andres
    Gancarski, Pierre
    Berti-Equille, Laure
    2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 829 - 834
  • [23] Hyperspectral remote sensing image classification based on random average band selection and an ensemble kernel extreme learning machine
    Ba Tuan Le
    Thai Thuy Lam Ha
    APPLIED OPTICS, 2020, 59 (13) : 4151 - 4157
  • [24] Motion Prediction Using Extreme Learning Machine in Image Guided Radiotherapy
    Jia, J.
    Cao, R.
    Pei, X.
    Wang, H.
    Hu, L.
    MEDICAL PHYSICS, 2015, 42 (06) : 3309 - 3309
  • [25] A fast adaptive SVDIncExtreme learning machine framework for remote sensing image classification
    Vidhya, M.
    Sudha, S. K.
    Aji, S.
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (15-16) : 5895 - 5916
  • [26] Orthogonal extreme learning machine for image classification
    Peng, Yong
    Kong, Wanzeng
    Yang, Bing
    NEUROCOMPUTING, 2017, 266 : 458 - 464
  • [27] Multi-Label Noise Robust Collaborative Learning for Remote Sensing Image Classification
    Aksoy, Ahmet Kerem
    Ravanbakhsh, Mahdyar
    Demir, Begum
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (05) : 6438 - 6451
  • [28] Fast active learning for hyperspectral image classification using extreme learning machine
    Pradhan, Monoj K.
    Minz, Sonajharia
    Shrivastava, Vimal K.
    IET IMAGE PROCESSING, 2019, 13 (04) : 549 - 555
  • [29] Extreme Learning Machine with Superpixel-Guided Composite Kernels for SAR Image Classification
    Guan, Dongdong
    Tang, Xiaoan
    Wang, Li
    Zhang, Junda
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2018, E101D (06) : 1703 - 1706
  • [30] Machine learning with remote sensing image datasets
    Petrovska, Biserka
    Atanasova-Pacemska, Tatjana
    Stojkovik, Natasa
    Stojanova, Aleksandra
    Kocaleva, Mirjana
    Informatica (Slovenia), 2021, 45 (03): : 347 - 358