Global emissions of refrigerants HCFC-22 and HFC-134a: Unforeseen seasonal contributions

被引:58
|
作者
Xiang, Bin [1 ]
Patra, Prabir K. [2 ]
Montzka, Stephen A. [3 ]
Miller, Scot M. [1 ]
Elkins, James W. [3 ]
Moore, Fred L. [3 ,4 ]
Atlas, Elliot L. [5 ]
Miller, Ben R. [3 ,4 ]
Weiss, Ray F. [6 ]
Prinn, Ronald G. [7 ]
Wofsy, Steven C. [1 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, Cambridge, MA 02138 USA
[2] Japan Agcy Marine Earth Sci & Technol, Dept Environm Geochem Cycle Res, Yokohama, Kanagawa 2360001, Japan
[3] NOAA, Earth Syst Res Lab, Global Monitoring Div, Halocarbon & Other Trace Gases Grp, Boulder, CO 80305 USA
[4] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[5] Univ Miami, Rosenstiel Sch Marine & Atmospher Sci, Dept Atmospher Sci, Miami, FL 33149 USA
[6] Univ Calif San Diego, Scripps Inst Oceanog, Geosci Res Div, La Jolla, CA 92093 USA
[7] MIT, Dept Earth Atmospher & Planetary Sci, Cambridge, MA 02139 USA
基金
美国国家科学基金会; 日本学术振兴会; 美国国家航空航天局;
关键词
HCFC-22; HFC-134a; refrigerants; global emissions; emission seasonality; MONTREAL PROTOCOL; GASES; AIR; TRENDS; CFCS;
D O I
10.1073/pnas.1417372111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
HCFC-22 (CHClF2) and HFC-134a (CH2FCF3) are two major gases currently used worldwide in domestic and commercial refrigeration and air conditioning. HCFC-22 contributes to stratospheric ozone depletion, and both species are potent greenhouse gases. In this work, we study in situ observations of HCFC-22 and HFC-134a taken from research aircraft over the Pacific Ocean in a 3-y span [Hlaper-Pole-to-Pole Observations (HIPPO) 2009-2011] and combine these data with long-term ground observations from global surface sites [ National Oceanic and Atmospheric Administration (NOAA) and Advanced Global Atmospheric Gases Experiment (AGAGE) networks]. We find the global annual emissions of HCFC-22 and HFC-134a have increased substantially over the past two decades. Emissions of HFC-134a are consistently higher compared with the United Nations Framework Convention on Climate Change (UNFCCC) inventory since 2000, by 60% more in recent years (2009-2012). Apart from these decadal emission constraints, we also quantify recent seasonal emission patterns showing that summertime emissions of HCFC-22 and HFC-134a are two to three times higher than wintertime emissions. This unforeseen large seasonal variation indicates that unaccounted mechanisms controlling refrigerant gas emissions are missing in the existing inventory estimates. Possible mechanisms enhancing refrigerant losses in summer are (i) higher vapor pressure in the sealed compartment of the system at summer high temperatures and (ii) more frequent use and service of refrigerators and air conditioners in summer months. Our results suggest that engineering (e. g., better temperature/vibration-resistant system sealing and new system design of more compact/efficient components) and regulatory (e. g., reinforcing system service regulations) steps to improve containment of these gases from working devices could effectively reduce their release to the atmosphere.
引用
收藏
页码:17379 / 17384
页数:6
相关论文
共 50 条