Parallel volume rendering with early ray termination for visualizing large-scale datasets

被引:0
|
作者
Matsui, M [1 ]
Ino, F [1 ]
Hagihara, K [1 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Toyonaka, Osaka 5608531, Japan
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents an efficient parallel algorithm for volume rendering of large-scale datasets. Our algorithm focuses on an optimization technique. namely early ray termination (ERT), which aims to reduce the amount of computation by avoiding enumeration of invisible voxels in the visualizing volume. The novelty of the algorithm is that it incorporates this technique into a distributed volume rendering system with global reduction of the computational amount. The algorithm also is capable of statically balancing the processor work-loads. The experimental results show that our algorithm with global ERT further achieves the maximum reduction of 33% compared to an earlier algorithm with local ERT. As a result, our load-balanced algorithm reduces the execution time to at least 66%, not only for dense objects but also for transparent objects.
引用
收藏
页码:245 / 256
页数:12
相关论文
共 50 条
  • [11] A scalable parallel software volume rendering algorithm for large-scale unstructured data
    Wangc, Kangjian
    Zheng, Yao
    [J]. COMPUTATIONAL SCIENCE - ICCS 2007, PT 1, PROCEEDINGS, 2007, 4487 : 482 - 489
  • [12] A Parallel Rendering Algorithm for Large-scale Terrain
    Bing, He
    Lei, Sui
    [J]. 2010 SECOND INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING AND APPLICATIONS: ICCEA 2010, PROCEEDINGS, VOL 1, 2010, : 530 - 536
  • [13] Cinema Darkroom: A Deferred Rendering Framework for Large-Scale Datasets
    Lukasczyk, Jonas
    Garth, Christoph
    Larsen, Matthew
    Engelke, Wito
    Hotz, Ingrid
    Rogers, David
    Ahrens, James
    Maciejewski, Ross
    [J]. 2020 IEEE 10TH SYMPOSIUM ON LARGE DATA ANALYSIS AND VISUALIZATION (LDAV), 2020, : 37 - 41
  • [14] Parallel Framework for Dimensionality Reduction of Large-Scale Datasets
    Samudrala, Sai Kiranmayee
    Zola, Jaroslaw
    Aluru, Srinivas
    Ganapathysubramanian, Baskar
    [J]. SCIENTIFIC PROGRAMMING, 2015, 2015
  • [15] TIPP: Parallel Delaunay Triangulation for Large-Scale Datasets
    Nguyen, Cuong
    Rhodes, Philip J.
    [J]. 30TH INTERNATIONAL CONFERENCE ON SCIENTIFIC AND STATISTICAL DATABASE MANAGEMENT (SSDBM 2018), 2018,
  • [16] Exploring the Millennium Run - Scalable Rendering of Large-Scale Cosmological Datasets
    Fraedrich, Roland
    Schneider, Jens
    Westermann, Ruediger
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2009, 15 (06) : 1251 - 1258
  • [17] Volume Rendering using Grid Computing for Large-Scale Volume Data
    Nishihashi, Kunihiko
    Higaki, Toru
    Okabe, Kenji
    Raytchev, Bisser
    Tamaki, Toni
    Kaneda, Kazufumi
    [J]. 2009 11TH IEEE INTERNATIONAL CONFERENCE ON COMPUTER-AIDED DESIGN AND COMPUTER GRAPHICS, PROCEEDINGS, 2009, : 470 - 477
  • [18] Assessing Improvements to the Parallel Volume Rendering Pipeline at Large Scale
    Peterka, Tom
    Ross, Robert
    Yu, Hongfeng
    Ma, Kwan-Liu
    Kendall, Wesley
    Huang, Jian
    [J]. ULTRA VIS: 2008 WORKSHOP ON ULTRASCALE VISUALIZATION, 2008, : 13 - +
  • [19] A survey of the techniques of volume rendering for large-scale scientific data
    Wang, Huawei
    He, Liu
    Cao, Yi
    Xiao, Li
    [J]. Guofang Keji Daxue Xuebao/Journal of National University of Defense Technology, 2020, 42 (02): : 1 - 12
  • [20] SparseLeap: Efficient Empty Space Skipping for Large-Scale Volume Rendering
    Hadwiger, Markus
    Al-Awami, Ali K.
    Beyer, Johanna
    Agus, Marco
    Pfister, Hanspeter
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2018, 24 (01) : 974 - 983