Adaptive Coherent Lp-Norm Combining

被引:0
|
作者
Nasri, Amir [1 ]
Nezampour, Ali [1 ]
Schober, Robert [1 ]
机构
[1] Univ British Columbia, Vancouver, BC V5Z 1M9, Canada
关键词
FADING CHANNELS; SIGNAL; NOISE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we introduce an adaptive L-p-norm metric for robust coherent diversity combining in non-Gaussian noise and interference. We derive a general closed-form expression for the asymptotic bit error rate (BER) for L-p-norm combining in independent non-identically distributed Ricean fading and non-Gaussian noise and interference with finite moments. Based on this asymptotic BER expression, the metric parameters can be adapted to the underlying type of noise and interference using a finite difference stochastic approximation (FDSA) algorithm. Simulation results confirm the validity of the derived asymptotic BER expression and the excellent performance of the proposed adaptive L-p-norm metric.
引用
收藏
页码:3898 / 3903
页数:6
相关论文
共 50 条
  • [21] Gradient iteration with lp-norm constraints
    Huang, Wei
    Chen, Di-Rong
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 381 (02) : 947 - 951
  • [22] lp-Norm Multiple Kernel Learning
    Kloft, Marius
    Brefeld, Ulf
    Sonnenburg, Soeren
    Zien, Alexander
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2011, 12 : 953 - 997
  • [23] Conic Formulation for lp-Norm Optimization
    F. Glineur
    T. Terlaky
    [J]. Journal of Optimization Theory and Applications, 2004, 122 : 285 - 307
  • [24] Matrix deviation inequality for lp-norm
    Sheu, Yuan-Chung
    Wang, Te-Chun
    [J]. RANDOM MATRICES-THEORY AND APPLICATIONS, 2023, 12 (04)
  • [25] Conic formulation for lp-norm optimization
    Glineur, F
    Terlaky, T
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2004, 122 (02) : 285 - 307
  • [26] ON THE ZEROS OF POLYNOMIALS OF MINIMAL LP-NORM
    KROO, A
    PEHERSTORFER, F
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 101 (04) : 652 - 656
  • [27] ON lP-NORM SPARSE BLIND DECONVOLUTION
    Nose-Filho, Kenji
    Romano, Joao M. T.
    [J]. 2014 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2014,
  • [28] ON APPROXIMATION IN THE LP-NORM BY RECIPROCALS OF POLYNOMIALS
    LEVIATAN, D
    LEVIN, AL
    SAFF, EB
    [J]. JOURNAL OF APPROXIMATION THEORY, 1989, 57 (03) : 322 - 331
  • [29] Inequalities concerning the Lp-norm of a polynomial
    Dewan, KK
    Bhat, AA
    Pukhta, MS
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 224 (01) : 14 - 21
  • [30] Adaptive Order Non-Convex Lp-norm Regularization in Image Restoration
    Afonso, Manya
    Sanches, Joao Miguel
    [J]. 7TH INTERNATIONAL CONFERENCE ON NEW COMPUTATIONAL METHODS FOR INVERSE PROBLEMS, 2017, 904