Artin-Schreier extensions of normal bases

被引:2
|
作者
Thomson, David [1 ]
Weir, Colin [2 ]
机构
[1] Carleton Univ, Sch Math & Stat, 1125 Colonel Dr, Ottawa, ON K1S 5B6, Canada
[2] Tutte Inst Math & Comp, Ottawa, ON, Canada
关键词
Finite fields; Normal bases; Finite field arithmetic; Artin-Schreier extensions;
D O I
10.1016/j.ffa.2018.06.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we extend a normal basis of a finite field over its base field to a new basis which permits both computationally inexpensive exponentiation and multiplication. We focus primarily on extensions of the finite field F-2. These bases are motivated by Artin-Schreier theory and we conclude that they are particularly useful in Artin-Schreier extensions; that is, extensions F-2n of F-2 with n a power of two. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:267 / 286
页数:20
相关论文
共 50 条
  • [41] ON THE COHOMOLOGICAL DIMENSION OF ARTIN-SCHREIER STRUCTURES
    HARAN, D
    JOURNAL OF ALGEBRA, 1993, 156 (01) : 219 - 236
  • [42] Isomorphisms between Artin-Schreier towers
    Couveignes, JM
    MATHEMATICS OF COMPUTATION, 2000, 69 (232) : 1625 - 1631
  • [43] COHOMOLOGY THEORY OF ARTIN-SCHREIER STRUCTURES
    HARAN, D
    JOURNAL OF PURE AND APPLIED ALGEBRA, 1990, 69 (02) : 141 - 160
  • [44] Number of points in an Artin-Schreier covering
    Blache, Regis
    ARITHMETIC, GEOMETRY, CRYPTOGRAPHY AND CODING THEORY, 2012, 574 : 15 - +
  • [45] Slope estimates of Artin-Schreier curves
    Scholten, J
    Zhu, HJ
    COMPOSITIO MATHEMATICA, 2003, 137 (03) : 275 - 292
  • [46] On the number of rational points on Artin-Schreier hypersurfaces
    Oliveira, Jose Alves
    Borges, Herivelto
    Martinez, F. E. Brochero
    FINITE FIELDS AND THEIR APPLICATIONS, 2023, 90
  • [47] Quadratic functions and maximal Artin-Schreier curves
    Anbar, Nurdagul
    Meidl, Wilfried
    FINITE FIELDS AND THEIR APPLICATIONS, 2014, 30 : 49 - 71
  • [48] A Class of Artin-Schreier Towers with Finite Genus
    San Ling
    Henning Stichtenoth
    Siman Yang
    Bulletin of the Brazilian Mathematical Society, 2005, 36 : 393 - 401
  • [49] Tangential covers and infinite Artin-Schreier towers
    Treibich, Armando
    COMPTES RENDUS MATHEMATIQUE, 2016, 354 (12) : 1225 - 1229
  • [50] On towers of function fields of Artin-Schreier type
    Beelen, P
    Garcia, A
    Stichtenoth, H
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2004, 35 (02): : 151 - 164