Whole-genome sequencing of a laboratory-evolved yeast strain

被引:77
|
作者
Araya, Carlos L. [1 ]
Payen, Celia [1 ]
Dunham, Maitreya J. [1 ]
Fields, Stanley [1 ,2 ,3 ]
机构
[1] Univ Washington, Dept Genome Sci, Seattle, WA 98195 USA
[2] Univ Washington, Dept Med, Seattle, WA 98195 USA
[3] Univ Washington, Howard Hughes Med Inst, Seattle, WA 98195 USA
来源
BMC GENOMICS | 2010年 / 11卷
关键词
RIBOSOMAL-RNA SYNTHESIS; EXPERIMENTAL EVOLUTION; CLONAL INTERFERENCE; GENE AMPLIFICATION; POPULATIONS; CAPTURE;
D O I
10.1186/1471-2164-11-88
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Experimental evolution of microbial populations provides a unique opportunity to study evolutionary adaptation in response to controlled selective pressures. However, until recently it has been difficult to identify the precise genetic changes underlying adaptation at a genome-wide scale. New DNA sequencing technologies now allow the genome of parental and evolved strains of microorganisms to be rapidly determined. Results: We sequenced >93.5% of the genome of a laboratory-evolved strain of the yeast Saccharomyces cerevisiae and its ancestor at >28x depth. Both single nucleotide polymorphisms and copy number amplifications were found, with specific gains over array-based methodologies previously used to analyze these genomes. Applying a segmentation algorithm to quantify structural changes, we determined the approximate genomic boundaries of a 5x gene amplification. These boundaries guided the recovery of breakpoint sequences, which provide insights into the nature of a complex genomic rearrangement. Conclusions: This study suggests that whole-genome sequencing can provide a rapid approach to uncover the genetic basis of evolutionary adaptations, with further applications in the study of laboratory selections and mutagenesis screens. In addition, we show how single-end, short read sequencing data can provide detailed information about structural rearrangements, and generate predictions about the genomic features and processes that underlie genome plasticity.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Whole-Genome Sequencing in Primary Care
    Vassy, J. L.
    Christensen, K. D.
    Schonman, E. F.
    Blout, C. L.
    Robinson, J. O.
    Krier, J. B.
    Diamond, P. M.
    Lebo, M.
    Machini, K.
    Azzariti, D. R.
    Dukhovny, D.
    Bates, D. W.
    MacRae, C. A.
    Murray, M. F.
    Rehm, H. L.
    McGuire, A. L.
    Green, R. C.
    ANNALS OF INTERNAL MEDICINE, 2017, 167 (03) : I20 - I20
  • [32] Whole-genome sequencing of the UK Biobank
    Halldorsson, Bjarni, V
    Stefansson, Kari
    NATURE, 2022,
  • [33] Whole-Genome Sequencing in Personalized Therapeutics
    Cordero, P.
    Ashley, E. A.
    CLINICAL PHARMACOLOGY & THERAPEUTICS, 2012, 91 (06) : 1001 - 1009
  • [34] Whole-genome sequencing diagnostics for newborns
    Louisa Flintoft
    Nature Reviews Genetics, 2012, 13 (11) : 758 - 758
  • [35] Whole-Genome Sequencing in Outbreak Analysis
    Gilchrist, Carol A.
    Turner, Stephen D.
    Riley, Margaret F.
    Petri, William A., Jr.
    Hewlett, Erik L.
    CLINICAL MICROBIOLOGY REVIEWS, 2015, 28 (03) : 541 - 563
  • [36] PennCNV in whole-genome sequencing data
    Lima, Leandro de Araujo
    Wang, Kai
    BMC BIOINFORMATICS, 2017, 18
  • [37] Human whole-genome shotgun sequencing
    Weber, JL
    Myers, EW
    GENOME RESEARCH, 1997, 7 (05) : 401 - 409
  • [38] PennCNV in whole-genome sequencing data
    Leandro de Araújo Lima
    Kai Wang
    BMC Bioinformatics, 18
  • [39] Whole-Genome Sequencing: The Long and the Short of It
    Caspar, Sylvan
    Stoll, Patricia
    Fritzmann, Siro
    Gut, Gilles
    Salerno, Daniel
    Meienberg, Janine
    Matyas, Gabor
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2023, 31 : 618 - 618
  • [40] Next-generation and whole-genome sequencing in the diagnostic clinical microbiology laboratory
    W. M. Dunne
    L. F. Westblade
    B. Ford
    European Journal of Clinical Microbiology & Infectious Diseases, 2012, 31 : 1719 - 1726