Correction of Copy Number Variation Data Using Principal Component Analysis

被引:0
|
作者
Chen, Jiayu [1 ]
Liu, Jingyu [1 ,2 ]
Calhoun, Vince D. [1 ,2 ]
机构
[1] Univ New Mexico, Dept Elect Engn, Albuquerque, NM 87131 USA
[2] Mind Res Network, Albuquerque, NM USA
基金
美国国家卫生研究院;
关键词
copy number variation; Log R Ratio; principal component analysis;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Copy number variation (CNV) detection using SNP array data is challenging due to the low signal-to-noise ratio. In this study, we propose a principal component analysis (PCA) based correction to eliminate variance in CNV data induced by potential confounding factors. Simulations show a substantial improvement in CNV detection accuracy after correction. We also observe a significant improvement in data quality in real SNP array data after correction.
引用
收藏
页码:827 / 828
页数:2
相关论文
共 50 条
  • [21] Processing of X-ray Microcalorimeter Data with Pulse Shape Variation using Principal Component Analysis
    Yan, D.
    Cecil, T.
    Gades, L.
    Jacobsen, C.
    Madden, T.
    Miceli, A.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2016, 184 (1-2) : 397 - 404
  • [22] Processing of X-ray Microcalorimeter Data with Pulse Shape Variation using Principal Component Analysis
    D. Yan
    T. Cecil
    L. Gades
    C. Jacobsen
    T. Madden
    A. Miceli
    Journal of Low Temperature Physics, 2016, 184 : 397 - 404
  • [23] COPY NUMBER VARIATION ANALYSIS IN THE DIAGNOSIS OF MODY
    Berberich, Amanda
    Wang, Jian
    Cao, Henian
    McIntyre, Adam
    Robinson, John
    Hegele, Robert A.
    ATHEROSCLEROSIS SUPPLEMENTS, 2018, 32 : 79 - 79
  • [24] Copy number variation analysis in PHACE syndrome
    Siegel, D.
    Gibbs, D.
    Frieden, I.
    Drolet, B.
    Broeckel, U.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2011, 131 : S72 - S72
  • [25] Research on the Correction of Spatial Heterodyne Interference Data Based on Principal Component Analysis
    Wang, Xin-Qiang
    Wang, Zhen
    Qin, Shan
    Xiong, Wei
    Wang, Fang-Yuan
    Ye, Song
    Nie, Kun
    Guang Pu Xue Yu Guang Pu Fen Xi/Spectroscopy and Spectral Analysis, 2024, 44 (12): : 3333 - 3338
  • [26] Using principal component analysis to explore co-variation of vowels
    Wilson Black, Joshua
    Brand, James
    Hay, Jen
    Clark, Lynn
    LANGUAGE AND LINGUISTICS COMPASS, 2023, 17 (01):
  • [27] Gene selection for microarray data analysis using principal component analysis
    Wang, AT
    Gehan, EA
    STATISTICS IN MEDICINE, 2005, 24 (13) : 2069 - 2087
  • [28] Deconstructing principal component analysis using a data reconciliation perspective
    Narasimhan, Shankar
    BhattSystems, Nirav
    COMPUTERS & CHEMICAL ENGINEERING, 2015, 77 : 74 - 84
  • [29] SAR Data Fusion Using Nonlinear Principal Component Analysis
    Fasano, Luca
    Latini, Daniele
    Machidon, Alina
    Clementini, Chiara
    Schiavon, Giovanni
    Del Frate, Fabio
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (09) : 1543 - 1547
  • [30] Using principal component analysis in process performance for multivariate data
    Wang, FK
    Du, TCT
    OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2000, 28 (02): : 185 - 194