Mechanical properties and multi-scale modeling of nanocrystalline materials

被引:49
|
作者
Benkassem, S. [1 ]
Capolungo, L.
Cherkaoui, M.
机构
[1] Univ Paul Verlaine, CNRS, LPMM, F-57045 Metz 1, France
[2] George W Woodruff Sch Mech Engn, Atlanta, GA 30332 USA
关键词
nanocrystalline materials; micromechanics; dislocation; Hall-Petch;
D O I
10.1016/j.actamat.2007.02.010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A generalized self-consistent scheme based on the coated inclusion method and using interfacial operators is developed and used to describe the grain-size-dependent viscoplastic behavior of pure fcc nanocrystalline materials. The material is represented by an equivalent three-phase material composed of coated inclusions embedded into an equivalent homogeneous medium. Inclusions represent grain cores and behave viscoplastically via dislocation glide while the coating represents both grain boundaries and triple junctions. A recently introduced constitutive law accounting for grain boundary dislocation emission and penetration is used to model the behavior of the coating. The model is applied to pure copper and enables the quantification of the macroscopic effect of interface dislocation emission. The analysis is completed with a set of finite element simulations revealing high stress concentrations at triple junctions. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:3563 / 3572
页数:10
相关论文
共 50 条
  • [41] Multi-scale modeling of aging of Waspaloy superalloy: prediction of microstructure evolution and coupling with mechanical properties
    Govercin, Betul
    Simsir, Caner
    [J]. METALLURGIA ITALIANA, 2024, (06): : 40 - 50
  • [42] Mechanical properties of nanocrystalline materials
    Meyers, MA
    Mishra, A
    Benson, DJ
    [J]. PROGRESS IN MATERIALS SCIENCE, 2006, 51 (04) : 427 - 556
  • [43] Multi-scale texture modeling
    Hielscher, Ralf
    Schaeben, Helmut
    [J]. MATHEMATICAL GEOSCIENCES, 2008, 40 (01) : 63 - 82
  • [44] Multi-scale lung modeling
    Tawhai, Merryn H.
    Bates, Jason H. T.
    [J]. JOURNAL OF APPLIED PHYSIOLOGY, 2011, 110 (05) : 1466 - 1472
  • [45] Multi-Scale Modeling of Hypertension
    Veress, A. L.
    Raymond, G. M.
    Gullberg, G. T.
    Bassingthwaighte, J. B.
    [J]. CINC: 2009 36TH ANNUAL COMPUTERS IN CARDIOLOGY CONFERENCE, 2009, 36 : 385 - +
  • [46] Multi-Scale Texture Modeling
    Ralf Hielscher
    Helmut Schaeben
    [J]. Mathematical Geosciences, 2008, 40 : 63 - 82
  • [47] Multi-scale modeling of polyimides
    Clancy, TC
    [J]. POLYMER, 2004, 45 (20) : 7001 - 7010
  • [48] Theoretical and Experimental Study on Multi-Scale Mechanical Properties of Soil
    Feng, De-luan
    Fang, Ying-guang
    [J]. SOIL MECHANICS AND FOUNDATION ENGINEERING, 2015, 52 (04) : 189 - 197
  • [49] Multi-Scale Study on the Mechanical Properties of Pultruded GFRP Laminates
    Maohua Zhang
    Zhongzhi Guan
    Yuhang Ren
    Hongguang Wang
    [J]. Fibers and Polymers, 2023, 24 : 2133 - 2146
  • [50] Multi-scale Simulation Techniques of Mechanical Strength of Nanocomposite Insulating Materials
    Kobayashi, Kinya
    Ohtake, Atsushi
    Sano, Akihiro
    Kato, Tetsuji
    [J]. IEEE TRANSACTIONS ON DIELECTRICS AND ELECTRICAL INSULATION, 2017, 24 (06) : 3500 - 3504