CONVERGENCE OF A VECTOR-BGK APPROXIMATION FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

被引:8
|
作者
Bianchini, Roberta [1 ]
Natalini, Roberto [2 ]
机构
[1] Ecole Normale Super Lyon, ENS Lyon, UMPA, 46 Allee Italie, F-69364 Lyon 07, France
[2] CNR, Ist Applicaz Calcolo Mauro Picone, Via Taurini 19, I-00185 Rome, Italy
关键词
Vector-BGK model; discrete velocities; incompressible Navier-Stokes equations; conservative-dissipative form; DISCRETE KINETIC APPROXIMATION; DISSIPATIVE HYPERBOLIC SYSTEMS; FLUID DYNAMIC LIMITS; GLOBAL EXISTENCE; SMOOTH SOLUTIONS; SCHEMES;
D O I
10.3934/krm.2019006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a rigorous convergence result for smooth solutions to a singular semilinear hyperbolic approximation, called vector-BGK model, to the solutions to the incompressible Navier-Stokes equations in Sobolev spaces. Our proof deeply relies on the dissipative properties of the system and on the use of an energy which is provided by a symmetrizer, whose entries are weighted in a suitable way with respect to the singular perturbation parameter. This strategy allows us to perform uniform energy estimates and to prove the convergence by compactness.
引用
收藏
页码:133 / 158
页数:26
相关论文
共 50 条
  • [21] The Incompressible Navier-Stokes Equations in Vacuum
    Danchin, Raphael
    Mucha, Piotr Boguslaw
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2019, 72 (07) : 1351 - 1385
  • [22] Convergence of a colocated finite volume scheme for the incompressible Navier-Stokes equations
    Zimmermann, S.
    [J]. Advances in Computational Methods in Sciences and Engineering 2005, Vols 4 A & 4 B, 2005, 4A-4B : 619 - 622
  • [23] Artificial compressibility approximation for the incompressible Navier-Stokes equations on unbounded domain
    Donatelli, D.
    Marcati, P.
    [J]. HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS: PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON HYPERBOLIC PROBLEMS, 2008, : 475 - 483
  • [24] A relaxation approximation of the incompressible Navier-Stokes system
    Wang, Hongli
    Liu, Huimin
    [J]. SCIENCEASIA, 2013, 39 (03): : 312 - 315
  • [25] Three-dimensional discrete-velocity BGK model for the incompressible Navier-Stokes equations
    Tamura, Akinori
    Okuyama, Keita
    Takahashi, Shiro
    Ohtsuka, Masaya
    [J]. COMPUTERS & FLUIDS, 2011, 40 (01) : 149 - 155
  • [26] A BGK MODEL FOR SMALL PRANDTL NUMBER IN THE NAVIER-STOKES APPROXIMATION
    BOUCHUT, F
    PERTHAME, B
    [J]. JOURNAL OF STATISTICAL PHYSICS, 1993, 71 (1-2) : 191 - 207
  • [27] More on Convergence of Chorin's Projection Method for Incompressible Navier-Stokes Equations
    Maeda, Masataka
    Soga, Kohei
    [J]. JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2022, 24 (02)
  • [28] A convergence result for the approximation of the Navier-Stokes equations by an incremental projection method
    Guermond, JL
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (12): : 1329 - 1332
  • [29] ANDERSON-ACCELERATED CONVERGENCE OF PICARD ITERATIONS FOR INCOMPRESSIBLE NAVIER-STOKES EQUATIONS
    Pollock, Sara
    Rebholz, Leo G.
    Xia, Mengying
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (02) : 615 - 637
  • [30] CONVERGENCE OF THE MAC SCHEME FOR THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS WITH VARIABLE DENSITY AND VISCOSITY
    Batteux, L.
    Gallouet, T.
    Herbin, R.
    Latche, C.
    Poullet, P.
    [J]. MATHEMATICS OF COMPUTATION, 2023, 92 (342) : 1595 - 1631