Recurrent Neural Network Channel Estimation Using Measured Massive MIMO Data

被引:0
|
作者
Faghani, Termeh [1 ]
Shojaeifard, Arman [2 ]
Wong, Kai-Kit [3 ]
Aghvami, A. Hamid [1 ]
机构
[1] Kings Coll London, London WC2R 2LS, England
[2] BT Labs, Adastral Pk, Ipswich IP5 3RE, Suffolk, England
[3] UCL, London WC1E 7JE, England
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this work, we develop a novel channel estimation method using recurrent neural networks (RNNs) for massive multiple-input multiple-output (MIMO) systems. The proposed framework alleviates the need for channel-state-information (CSI) feedback and pilot assignment through exploiting the inherent time and frequency correlations in practical propagation environments. We carry out the analysis using empirical MIMO channel measurements between a 64T64R active antenna system and a state-of-the-art multi-antenna scanner for both mobile and stationary use-cases. We also capture and analyze similar MIMO channel data from a legacy 2T2R base station (BS) for comparison purposes. Our findings confirm the applicability of utilising the proposed RNN-based massive MIMO channel acquisition scheme particularly for channels with long time coherence and hardening effects. In our practical setup, the proposed method reduced the number of pilots used by 25%.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Deep Neural Network: An Alternative to Traditional Channel Estimators in Massive MIMO Systems
    Melgar, Antonio
    de la Fuente, Alejandro
    Carro-Calvo, Leopoldo
    Barquero-Perez, Oscar
    Morgado, Eduardo
    [J]. IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2022, 8 (02) : 657 - 671
  • [42] Graph Neural Network-Based Channel Tracking for Massive MIMO Networks
    Yang, Yindi
    Zhang, Shun
    Gao, Feifei
    Ma, Jianpeng
    Dobre, Octavia A.
    [J]. IEEE COMMUNICATIONS LETTERS, 2020, 24 (08) : 1747 - 1751
  • [43] Learning A Recurrent Neural Network for State Estimation using Filtered Sensory Data
    Hammam, Ahmed M.
    Abdelhady, Mohamed A.
    Shehata, Omar M.
    Morgan, Elsayed, I
    [J]. 2019 30TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV19), 2019, : 1448 - 1453
  • [44] Channel estimation for massive MIMO system using the shannon entropy function
    Zaid Albataineh
    Nebal Al-Zoubi
    Ahmed Musa
    [J]. Cluster Computing, 2023, 26 : 3793 - 3801
  • [45] Channel estimation for massive MIMO system using the shannon entropy function
    Albataineh, Zaid
    Al-Zoubi, Nebal
    Musa, Ahmed
    [J]. CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2023, 26 (06): : 3793 - 3801
  • [46] Bayesian Channel Estimation for Massive MIMO Communications
    Zhu, Chengzhi
    Zheng, Zhitan
    Jiang, Bin
    Zhong, Wen
    Gao, Xiqi
    [J]. 2016 IEEE 83RD VEHICULAR TECHNOLOGY CONFERENCE (VTC SPRING), 2016,
  • [47] Compressed sensing channel estimation in massive MIMO
    Pramanik, Ankita
    Maity, Santi P.
    Farheen, Zeba
    [J]. IET COMMUNICATIONS, 2019, 13 (19) : 3145 - 3152
  • [48] Uplink Channel Estimation in Massive MIMO Systems Using Factor Analysis
    Wei, Xiao
    Peng, Wei
    Chen, Da
    Schober, Robert
    Jiang, Tao
    [J]. IEEE COMMUNICATIONS LETTERS, 2018, 22 (08) : 1620 - 1623
  • [49] Optimization of Channel Estimation Using ELMx-based in Massive MIMO
    Innok, Apinya
    Keawin, Chittapon
    Uthansakul, Peerapong
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2022, 73 (01): : 103 - 118
  • [50] Channel Estimation for Massive MIMO systems using Tensor Cores in GPU
    Gokalgandhi, Bhargav
    Seskar, Ivan
    [J]. IEEE INFOCOM 2022 - IEEE CONFERENCE ON COMPUTER COMMUNICATIONS WORKSHOPS (INFOCOM WKSHPS), 2022,