Semiparametric competing risks analysis

被引:10
|
作者
Canals-Cerda, Jose
Gurmu, Shiferaw
机构
[1] Fed Reserve Bank Philadelphia, Philadelphia, PA 19106 USA
[2] Georgia State Univ, Andrew Young Sch Policy Studies, Dept Econ, Atlanta, GA 30302 USA
来源
ECONOMETRICS JOURNAL | 2007年 / 10卷 / 02期
关键词
competing risks; unobserved heterogeneity; series approximation; survival analysis;
D O I
10.1111/j.1368-423X.2007.00205.x
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this paper we analyse a semi-parametric estimation technique for competing risks models based on series expansion of the joint density of the unobserved heterogeneity components. This technique allows for unrestricted correlation among the risks. The finite sample behavior of the estimation technique is analysed in a Monte Carlo experiment using an empirically relevant data-generating process. The estimator performs well when compared with the Heckman-Singer estimator.
引用
收藏
页码:193 / 215
页数:23
相关论文
共 50 条
  • [21] The Bernstein-von Mises theorem in semiparametric competing risks models
    De Blasi, Pierpaolo
    Hjort, Nils Lid
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (07) : 2316 - 2328
  • [22] Efficient semiparametric mixture inferences on cure rate models for competing risks
    Choi, Sangbum
    Huang, Xuelin
    Cormier, Janice N.
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2015, 43 (03): : 420 - 435
  • [23] Marginal semiparametric transformation models for clustered multivariate competing risks data
    He, Yizeng
    Kim, Soyoung
    Mao, Lu
    Ahn, Kwang Woo
    [J]. STATISTICS IN MEDICINE, 2022, 41 (26) : 5349 - 5364
  • [24] Semiparametric mixture cure model analysis with competing risks data: Application to vascular access thrombosis data
    Chen, Chyong-Mei
    Shen, Pao-sheng
    Lin, Chih-Ching
    Wu, Chih-Cheng
    [J]. STATISTICS IN MEDICINE, 2020, 39 (27) : 4086 - 4099
  • [25] Impact of dependent left truncation in semiparametric competing risks methods: A simulation study
    Bakoyannis, Giorgos
    Touloumi, Giota
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (03) : 2025 - 2042
  • [26] Semiparametric marginal regression for clustered competing risks data with missing cause of failure
    Zhou, Wenxian
    Bakoyannis, Giorgos
    Zhang, Ying
    Yiannoutsos, Constantin T.
    [J]. BIOSTATISTICS, 2022,
  • [27] Cumulative incidence in competing risks data and competing risks regression analysis
    Kim, Haesook T.
    [J]. CLINICAL CANCER RESEARCH, 2007, 13 (02) : 559 - 565
  • [28] Semiparametric marginal regression for clustered competing risks data with missing cause of failure
    Zhou, Wenxian
    Bakoyannis, Giorgos
    Zhang, Ying
    Yiannoutsos, Constantin T.
    [J]. BIOSTATISTICS, 2023, 24 (03) : 795 - 810
  • [29] Semiparametric regression modelling of current status competing risks data: a Bayesian approach
    Pavithra Hariharan
    P. G. Sankaran
    [J]. Computational Statistics, 2024, 39 : 2083 - 2108
  • [30] Semiparametric accelerated failure time cure rate mixture models with competing risks
    Choi, Sangbum
    Zhu, Liang
    Huang, Xuelin
    [J]. STATISTICS IN MEDICINE, 2018, 37 (01) : 48 - 59