A stochastic representation for backward incompressible Navier-Stokes equations

被引:19
|
作者
Zhang, Xicheng [1 ,2 ]
机构
[1] Huazhong Univ Sci & Technol, Dept Math, Wuhan 430074, Hubei, Peoples R China
[2] Univ New S Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
基金
澳大利亚研究理事会;
关键词
Backward Navier-Stokes equation; Stochastic representation; Global existence; Large deviation; FLOWS;
D O I
10.1007/s00440-009-0234-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
By reversing the time variable we derive a stochastic representation for backward incompressible Navier-Stokes equations in terms of stochastic Lagrangian paths, which is similar to Constantin and Iyer's forward formulations in Constantin and Iyer (Comm Pure Appl Math LXI:330-345, 2008). Using this representation, a self-contained proof of local existence of solutions in Sobolev spaces are provided for incompressible Navier-Stokes equations in the whole space. In two dimensions or large viscosity, an alternative proof to the global existence is also given. Moreover, a large deviation estimate for stochastic particle trajectories is presented when the viscosity tends to zero.
引用
收藏
页码:305 / 332
页数:28
相关论文
共 50 条