Full-physics cosmological simulations are powerful tools for studying the formation and evolution of structure in the universe but require extreme computational resources. Here, we train a convolutional neural network to use a cheaper N-body-only simulation to reconstruct the baryon hydrodynamic variables (density, temperature, and velocity) on scales relevant to the Ly alpha forest, using data from Nyx simulations. We show that our method enables rapid estimation of these fields at a resolution of similar to 20 kpc, and captures the statistics of the Ly alpha forest with much greater accuracy than existing approximations. Because our model is fully convolutional, we can train on smaller simulation boxes and deploy on much larger ones, enabling substantial computational savings. Furthermore, as our method produces an approximation for the hydrodynamic fields instead of Ly alpha flux directly, it is not limited to a particular choice of ionizing background or mean transmitted flux.
机构:
South China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510640, Peoples R ChinaSouth China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510640, Peoples R China
He, Lin
Zhu, Jiawei
论文数: 0引用数: 0
h-index: 0
机构:
South China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510640, Peoples R ChinaSouth China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510640, Peoples R China
Zhu, Jiawei
Li, Jun
论文数: 0引用数: 0
h-index: 0
机构:
Sun Yat Sen Univ, Guangdong Prov Key Lab Urbanizat & Geosimulat, Sch Geog & Planning, Guangzhou 510275, Peoples R ChinaSouth China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510640, Peoples R China
Li, Jun
Meng, Deyu
论文数: 0引用数: 0
h-index: 0
机构:
Xi An Jiao Tong Univ, Sch Math & Stat, Xian 710049, Peoples R China
Xi An Jiao Tong Univ, Minist Educ, Key Lab Intelligent Networks & Network Secur, Xian 710049, Peoples R ChinaSouth China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510640, Peoples R China
Meng, Deyu
Chanussot, Jocelyn
论文数: 0引用数: 0
h-index: 0
机构:
Univ Grenoble Alpes, GIPSA Lab, Grenoble Inst Technol, CNRS, F-38000 Grenoble, FranceSouth China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510640, Peoples R China
Chanussot, Jocelyn
Plaza, Antonio J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Extremadura, Hyperspectral Comp Lab, Dept Technol Comp & Commun, Escuela Politecn, E-10071 Caceres, SpainSouth China Univ Technol, Sch Automat Sci & Engn, Guangzhou 510640, Peoples R China