Fast, High-fidelity Lyα Forests with Convolutional Neural Networks

被引:7
|
作者
Harrington, Peter [1 ]
Mustafa, Mustafa [1 ]
Dornfest, Max [1 ]
Horowitz, Benjamin [1 ,2 ]
Lukic, Zarija [1 ]
机构
[1] Lawrence Berkeley Natl Lab, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[2] Princeton Univ, Dept Astron, Princeton, NJ 08544 USA
来源
ASTROPHYSICAL JOURNAL | 2022年 / 929卷 / 02期
关键词
DENSITY; REDSHIFT; HYDRODYNAMICS; REIONIZATION; EVOLUTION; IMPACT;
D O I
10.3847/1538-4357/ac5faa
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Full-physics cosmological simulations are powerful tools for studying the formation and evolution of structure in the universe but require extreme computational resources. Here, we train a convolutional neural network to use a cheaper N-body-only simulation to reconstruct the baryon hydrodynamic variables (density, temperature, and velocity) on scales relevant to the Ly alpha forest, using data from Nyx simulations. We show that our method enables rapid estimation of these fields at a resolution of similar to 20 kpc, and captures the statistics of the Ly alpha forest with much greater accuracy than existing approximations. Because our model is fully convolutional, we can train on smaller simulation boxes and deploy on much larger ones, enabling substantial computational savings. Furthermore, as our method produces an approximation for the hydrodynamic fields instead of Ly alpha flux directly, it is not limited to a particular choice of ionizing background or mean transmitted flux.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Extracting Meaningful High-Fidelity Knowledge from Convolutional Neural Networks
    Ngan, Kwun Ho
    Garcez, Artur D'Avila
    Townsend, Joseph
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [2] Supervised-unsupervised combined deep convolutional neural networks for high-fidelity pansharpening
    Liu, Qiang
    Meng, Xiangchao
    Shao, Feng
    Li, Shutao
    INFORMATION FUSION, 2023, 89 : 292 - 304
  • [3] High-fidelity deconvolution for acoustic-resolution photoacoustic microscopy enabled by convolutional neural networks
    Feng, Fei
    Liang, Siqi
    Luo, Jiajia
    Chen, Sung-Liang
    PHOTOACOUSTICS, 2022, 26
  • [4] Unambiguous and High-Fidelity Backdoor Watermarking for Deep Neural Networks
    Hua, Guang
    Teoh, Andrew Beng Jin
    Xiang, Yong
    Jiang, Hao
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (08) : 11204 - 11217
  • [5] High-fidelity reproduction of central galaxy joint distributions with neural networks
    Rodrigues, Natalia V. N.
    de Santi, Natali S. M.
    Montero-Dorta, Antonio D.
    Abramo, L. Raul
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 522 (03) : 3236 - 3247
  • [6] A Fast High-Fidelity Source-Filter Vocoder With Lightweight Neural Modules
    Yang, Runxuan
    Peng, Yuyang
    Hu, Xiaolin
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2023, 31 : 3362 - 3373
  • [7] Harvesting the Ly α forest with convolutional neural networks
    Cheng, Ting-Yun
    Cooke, Ryan J.
    Rudie, Gwen
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 517 (01) : 755 - 775
  • [8] MusicHiFi: Fast High-Fidelity Stereo Vocoding
    Zhu, Ge
    Caceres, Juan-Pablo
    Duan, Zhiyao
    Bryan, Nicholas J.
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 2365 - 2369
  • [9] Fast, high-fidelity readout of multiple qubits
    Bronn, N. T.
    Abdo, B.
    Inoue, K.
    Lekuch, S.
    Corcoles, A. D.
    Hertzberg, J. B.
    Takita, M.
    Bishop, L. S.
    Gambetta, J. M.
    Chow, J. M.
    12TH INTERNATIONAL WORKSHOP ON LOW TEMPERATURE ELECTRONICS, 2017, 834
  • [10] Neuralangelo: High-Fidelity Neural Surface Reconstruction
    Li, Zhaoshuo
    Muller, Thomas
    Evans, Alex
    Tayloi, Russell H.
    Unberath, Mathias
    Liu, Ming -Yu
    Lin, Chen-Hsuan
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 8456 - 8465