Travelling wave solutions in a class of generalized Korteweg-de Vries equation

被引:3
|
作者
Shen, Jianwei [1 ]
Xu, Wei
机构
[1] Xuchang Univ, Dept Math, Xuchang 461000, Henan, Peoples R China
[2] Northwestern Polytech Univ, Dept Appl Math, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/j.chaos.2006.04.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a new generalization of KdV equation u(t) = u(x)u(1-2) + alpha[2u(xxx)u(p) + 4pu(p-1)u(x)u(xx) + p(p - 1)u(p-2)(u(x))(3)] and investigate its bifurcation of travelling wave solutions. From the above analysis, we know that there exists compacton and cusp waves in the system. We explain the reason that these non-smooth travelling wave solution arise by using the bifurcation theory. (c) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1299 / 1306
页数:8
相关论文
共 50 条
  • [1] Travelling wave solutions on a non-zero background for the generalized Korteweg-de Vries equation
    Anco, Stephen C.
    Nayeri, HamidReza
    Recio, Elena
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (08)
  • [2] Exact travelling wave solutions of the dissipative coupled Korteweg-de Vries equation
    Liu Qiang
    Zhang Weiguo
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2010, 215 (12) : 4203 - 4215
  • [3] Classical Solutions for the Generalized Korteweg-de Vries Equation
    Georgiev, Svetlin
    Boukarou, Aissa
    Hajjej, Zayd
    Zennir, Khaled
    [J]. AXIOMS, 2023, 12 (08)
  • [4] Convergence of the Solutions on the Generalized Korteweg-de Vries Equation
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    [J]. MATHEMATICAL MODELLING AND ANALYSIS, 2016, 21 (02) : 239 - 259
  • [5] Similarity solutions of the generalized Korteweg-de Vries equation
    Bona, JL
    Weissler, FB
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 127 : 323 - 351
  • [6] On a class of singular solutions to the Korteweg-de Vries equation
    S. I. Pohozaev
    [J]. Doklady Mathematics, 2010, 82 : 936 - 938
  • [7] On a Class of Singular Solutions to the Korteweg-de Vries Equation
    Pohozaev, S. I.
    [J]. DOKLADY MATHEMATICS, 2010, 82 (03) : 936 - 938
  • [8] GENERALIZED KORTEWEG-DE VRIES EQUATION
    TSUTSUMI, M
    MUKASA, T
    IINO, R
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY, 1970, 46 (09): : 921 - &
  • [9] On quasiperiodic wave solutions and integrability to a generalized -dimensional Korteweg-de Vries equation
    Xu, Mei-Juan
    Tian, Shou-Fu
    Tu, Jian-Min
    Ma, Pan-Li
    Zhang, Tian-Tian
    [J]. NONLINEAR DYNAMICS, 2015, 82 (04) : 2031 - 2049
  • [10] ON THE (GENERALIZED) KORTEWEG-DE VRIES EQUATION
    KENIG, CE
    PONCE, G
    VEGA, L
    [J]. DUKE MATHEMATICAL JOURNAL, 1989, 59 (03) : 585 - 610