Convergence of the Solutions on the Generalized Korteweg-de Vries Equation

被引:13
|
作者
Coclite, Giuseppe Maria [1 ]
di Ruvo, Lorenzo [2 ]
机构
[1] Univ Bari, Dept Math, Via E Orabona 4, I-70125 Bari, Italy
[2] Univ Modena & Reggio Emilia, Dept Sci & Methods Engn, Via G Amendola 2, I-42122 Reggio Emilia, Italy
关键词
compensated compactness; singular limit; Korteweg-de Vries equation; connected compactness; 35L65; 35L05; 35G25; CONSERVATION-LAWS; DIFFUSION; DISPERSION; ENTROPY; LIMIT;
D O I
10.3846/13926292.2016.1150358
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the generalized Korteweg-de Vries equation, which contains nonlinear dispersive effects. We prove that as the diffusion parameter tends to zero, the solutions of the dispersive equation converge to discontinuous weak solutions of the scalar conservation law. The proof relies on deriving suitable a priori estimates together with an application of the compensated compactness method in the L-p setting.
引用
收藏
页码:239 / 259
页数:21
相关论文
共 50 条
  • [1] Classical Solutions for the Generalized Korteweg-de Vries Equation
    Georgiev, Svetlin
    Boukarou, Aissa
    Hajjej, Zayd
    Zennir, Khaled
    [J]. AXIOMS, 2023, 12 (08)
  • [2] Similarity solutions of the generalized Korteweg-de Vries equation
    Bona, JL
    Weissler, FB
    [J]. MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1999, 127 : 323 - 351
  • [3] GENERALIZED KORTEWEG-DE VRIES EQUATION
    TSUTSUMI, M
    MUKASA, T
    IINO, R
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY, 1970, 46 (09): : 921 - &
  • [4] ON THE (GENERALIZED) KORTEWEG-DE VRIES EQUATION
    KENIG, CE
    PONCE, G
    VEGA, L
    [J]. DUKE MATHEMATICAL JOURNAL, 1989, 59 (03) : 585 - 610
  • [5] Rapidly oscillating solutions of a generalized Korteweg-de Vries equation
    Kashchenko, S. A.
    [J]. COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2017, 57 (11) : 1778 - 1788
  • [6] Wronskians, generalized Wronskians and solutions to the Korteweg-de Vries equation
    Ma, WX
    [J]. CHAOS SOLITONS & FRACTALS, 2004, 19 (01) : 163 - 170
  • [7] On the Generalized Nonlinear Korteweg-De Vries Equation
    Gladkov, S. O.
    [J]. TECHNICAL PHYSICS, 2024,
  • [8] Bifurcations in the Generalized Korteweg-de Vries Equation
    Kashchenko, S. A.
    Preobrazhenskaya, M. M.
    [J]. RUSSIAN MATHEMATICS, 2018, 62 (02) : 49 - 61
  • [9] Convergence of the Rosenau-Korteweg-de Vries Equation to the Korteweg-de Vries One
    Coclite, Giuseppe Maria
    di Ruvo, Lorenzo
    [J]. CONTEMPORARY MATHEMATICS, 2020, 1 (05): : 365 - 392
  • [10] SOLUTION OF A GENERALIZED KORTEWEG-DE VRIES EQUATION
    TAGARE, SG
    CHAKRABARTI, A
    [J]. PHYSICS OF FLUIDS, 1974, 17 (06) : 1331 - 1332