Purification in entanglement distribution with deep quantum neural network

被引:0
|
作者
Xu, Jin [1 ]
Chen, Xiaoguang [1 ]
Zhang, Rong [1 ]
Xiao, Hanwei [1 ]
机构
[1] Fudan Univ, Dept Commun Sci & Engn, Shanghai 200433, Peoples R China
关键词
purification; quantum neural network; entanglement distribution; quantum communication; STATE;
D O I
10.1088/1674-1056/ac6330
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Entanglement distribution is important in quantum communication. Since there is no information with value in this process, purification is a good choice to solve channel noise. In this paper, we simulate the purification circuit under true environment on Cirq, which is a noisy intermediate-scale quantum (NISQ) platform. Besides, we apply quantum neural network (QNN) to the state after purification. We find that combining purification and quantum neural network has good robustness towards quantum noise. After general purification, quantum neural network can improve fidelity significantly without consuming extra states. It also helps to obtain the advantage of entangled states with higher dimension under amplitude damping noise. Thus, the combination can bring further benefits to purification in entanglement distribution.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Advances in quantum entanglement purification
    Pei-Shun Yan
    Lan Zhou
    Wei Zhong
    Yu-Bo Sheng
    [J]. Science China Physics, Mechanics & Astronomy, 2023, 66
  • [22] Entanglement purification for quantum communication
    Pan, JW
    Simon, C
    Brukner, C
    Zeilinger, A
    [J]. NATURE, 2001, 410 (6832) : 1067 - 1070
  • [23] QuCNN : A Quantum Convolutional Neural Network with Entanglement Based Backpropagation
    Stein, Samuel
    Mao, Ying
    Ang, James
    Li, Ang
    [J]. 2022 IEEE/ACM 7TH SYMPOSIUM ON EDGE COMPUTING (SEC 2022), 2022, : 380 - 386
  • [24] Infinite neural network quantum states: entanglement and training dynamics
    Luo, Di
    Halverson, James
    [J]. MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2023, 4 (02):
  • [25] Decoherence and Entanglement Simulation in a Model of Quantum Neural Network Based on Quantum Dots
    Altaisky, Mikhail V.
    Zolnikova, Nadezhda N.
    Kaputkina, Natalia E.
    Krylov, Victor A.
    Lozovik, Yurii E.
    Dattani, Nikesh S.
    [J]. MATHEMATICAL MODELING AND COMPUTATIONAL PHYSICS (MMCP 2015), 2016, 108
  • [26] Quantum linear network coding for entanglement distribution in restricted architectures
    de Beaudrap, Niel
    Herbert, Steven
    [J]. QUANTUM, 2020, 4 : 1 - 38
  • [27] A Dynamic Multi-Protocol Entanglement Distribution Quantum Network
    Wang, R.
    Alia, O.
    Clark, M. J.
    Bahrani, S.
    Joshi, S. K.
    Aktas, D.
    Kanellos, G. T.
    Peranic, M.
    Loncaric, M.
    Stipcevic, M.
    Rarity, J.
    Nejabati, R.
    Simeonidou, D.
    [J]. 2022 OPTICAL FIBER COMMUNICATIONS CONFERENCE AND EXHIBITION (OFC), 2022,
  • [28] Extracting quantum entanglement - (General entanglement purification protocols)
    Ambainis, A
    Smith, A
    Yang, K
    [J]. 17TH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2002, : 103 - 112
  • [29] Quantum state transfer and entanglement distribution among distant nodes in a quantum network
    Cirac, JI
    Zoller, P
    Kimble, HJ
    Mabuchi, H
    [J]. PHYSICAL REVIEW LETTERS, 1997, 78 (16) : 3221 - 3224
  • [30] GLLP proof with two-way entanglement purification in quantum key distribution
    Bing Liu
    Xinrui Liu
    Weiguang Jia
    [J]. The European Physical Journal Plus, 137