Mechanistic insights into the roles of ferric chloride on methane production in anaerobic digestion of waste activated sludge

被引:38
|
作者
Zhan, Wei [1 ]
Tian, Yu [1 ]
Zhang, Jun [1 ]
Zuo, Wei [1 ]
Li, Lipin [1 ]
Jin, Yaruo [1 ]
Lei, Yongjia [1 ]
Xie, Ansen [1 ]
Zhang, Xiyu [1 ]
机构
[1] Harbin Inst Technol, Sch Environm, State Key Lab Urban Water Resource & Environm SKL, Harbin 150090, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Dissimilatory iron reduction; Ferric chloride; Waste-activated sludge; Anaerobic digestion; Fe(III)-Reducing bacteria; FATTY-ACIDS PRODUCTION; ENHANCED PRIMARY SEDIMENTATION; ACIDOGENIC FERMENTATION; BIOGAS CONVERSION; SEWAGE-SLUDGE; SP NOV; IRON; PRETREATMENT; FEASIBILITY; REDUCTION;
D O I
10.1016/j.jclepro.2021.126527
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ferric chloride (FC) is widely used in sewage treatment in practice and would influence anaerobic digestion by remaining in waste-activated sludge (WAS). However, the effects and mechanisms of FC involved in the WAS anaerobic digestion system have yet to be thoroughly elucidated. This study revealed the different effects and underlying mechanism of FC addition on each key stage of WAS anaerobic digestion. It was found that FC enhanced methane production by 114.7-197.2%, with the maximum obtained at the dosage of 234 mg Fe(III)/L. Further study revealed that the dissimilatory iron reduction (DIR) induced by FC was the critical route that impacted the whole process of WAS anaerobic digestion. FC promoted the WAS solubilization, hydrolysis, and acidification via DIR process, since FC could serve as electron acceptors to accelerate the decomposition and degradation of WAS complex organics, and accept the Intermediate electrons to stimulate the bioconversion of acetic acid from amino acids and monosaccharides. However, FC inhibited methane production from acetoclastic and hydrogenotrophic methanogenesis by 29.2% and 28.4%, which was attributed to the DIR process competed with methyl-CoM for electrons from [CO] and HS-HTP, and inhibited the bioconversion from methyl-CoM to methane. Microbial community analysis confirmed that FC enriched Fe(III)-reducing genera and the bacterial microorganisms related to hydrolysis and acidification, but decreased the richness of methanogens. Overall, this study contributes to a better understanding of the mechanisms of FC integrated into WAS anaerobic digestion, and laid the foundation to optimize the routes for WAS energy/carbon recovery. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Enhancing methane production in anaerobic digestion of waste activated sludge by combined thermal hydrolysis and photocatalysis pretreatment
    Chen, Jian
    Sun, Yihu
    Chen, Hongbo
    BIORESOURCE TECHNOLOGY, 2024, 411
  • [42] Effective methane production from waste activated sludge in anaerobic digestion via formic acid pretreatment
    Liang, Zhu
    Shen, Nan
    Lu, Changchen
    Chen, Yun
    Guan, Yuying
    BIOMASS & BIOENERGY, 2021, 151
  • [43] Characteristics of digested sludge-derived biochar for promoting methane production during anaerobic digestion of waste activated sludge
    Duan, Shengye
    He, Junguo
    Xin, Xiaodong
    Li, Lin
    Zou, Xiang
    Zhong, Yijie
    Zhang, Jie
    Cui, Xinxin
    BIORESOURCE TECHNOLOGY, 2023, 384
  • [44] Roles of acid-producing bacteria in anaerobic digestion of waste activated sludge
    Ai, Sijia
    Liu, Hongyu
    Wu, Mengjie
    Zeng, Guangming
    Yang, Chunping
    FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING, 2018, 12 (06)
  • [45] Roles of acid-producing bacteria in anaerobic digestion of waste activated sludge
    Sijia Ai
    Hongyu Liu
    Mengjie Wu
    Guangming Zeng
    Chunping Yang
    Frontiers of Environmental Science & Engineering, 2018, 12
  • [46] Polydimethyldiallylammonium chloride induces oxidative stress in anaerobic digestion of waste activated sludge
    Jiao, Yimeng
    Chen, Hongbo
    BIORESOURCE TECHNOLOGY, 2022, 356
  • [47] Thermophilic anaerobic digestion of waste activated sludge
    Ros, M
    Zupancic, GD
    ACTA CHIMICA SLOVENICA, 2003, 50 (02) : 359 - +
  • [48] Insights into mechanisms of red mud promoting biogas production from waste activated sludge anaerobic digestion
    Zhao, Zisheng
    Wu, Hongxin
    An, Yu
    Zhang, Yuhan
    Huang, Fuxin
    Wang, Kang
    Zhang, Guangyi
    RENEWABLE ENERGY, 2024, 232
  • [49] Improvement of Methane Production and Sludge Dewaterability by FeCl3-Assisted Anaerobic Digestion of Aluminum Waste-Activated Sludge
    Cheng, Yi
    Wang, Xin
    Wu, Jiayi
    Chen, Yun
    Shen, Nan
    Wang, Guoxiang
    Liu, Xiankun
    ACS ES&T WATER, 2021, 1 (11): : 2370 - 2376
  • [50] New Sludge Pretreatment Method to Improve Methane Production in Waste Activated Sludge Digestion
    Zhang, Dong
    Chen, Yinguang
    Zhao, Yuxiao
    Zhu, Xiaoyu
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (12) : 4802 - 4808