Incremental Support Vector Clustering with Outlier Detection

被引:0
|
作者
Huang, Dong [1 ]
Lai, Jian-Huang [1 ]
Wang, Chang-Dong [1 ]
机构
[1] Sun Yat Sen Univ, Sch Informat Sci & Technol, Guangzhou 510275, Guangdong, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Support vector clustering (SVC) is a nonparametric clustering algorithm inspired by support vector machines. Incremental support vector clustering (ISVC) extends the SVC algorithm to an incremental version for the case of large-scale datasets with the assumption of no outliers. In order to tackle the problem of clustering large-scale noisy datasets, this paper proposes the algorithm termed incremental support vector clustering with outlier detection (OD-ISVC). The proposed algorithm consists of two components, namely, incremental support vector (SV) construction and dynamic bounded support vector (BSV) management. We introduce the concept of BSV-pool, where the check and recycle procedure is designed for updating the temporarily stored BSVs and detecting outliers. The experiments on real and synthetic datasets demonstrate the effectiveness and efficiency of our method.
引用
收藏
页码:2339 / 2342
页数:4
相关论文
共 50 条
  • [31] Dynamic Rough-Fuzzy Support Vector Domain Description for Outlier Detection
    Saltos Atiencia, Ramiro
    Weber, Richard
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE), 2018,
  • [32] Extensions of vector quantization for incremental clustering
    Lughofer, Edwin
    [J]. PATTERN RECOGNITION, 2008, 41 (03) : 995 - 1011
  • [33] An Efficient Support Vector Machine Algorithm Based Network Outlier Detection System
    Alghushairy, Omar
    Alsini, Raed
    Alhassan, Zakhriya
    Alshdadi, Abdulrahman A.
    Banjar, Ameen
    Yafoz, Ayman
    Ma, Xiaogang
    [J]. IEEE ACCESS, 2024, 12 : 24428 - 24441
  • [34] Robust support vector data description for outlier detection with noise or uncertain data
    Chen, Guijun
    Zhang, Xueying
    Wang, Zizhong John
    Li, Fenglian
    [J]. KNOWLEDGE-BASED SYSTEMS, 2015, 90 : 129 - 137
  • [35] Outlier Analysis and Detection using K-medoids with Support Vector Machine
    Manikandan, R. P. S.
    Kalpana, A. M.
    NaveenaPriya, M.
    [J]. 2016 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2016,
  • [36] A method for locating digital evidences with outlier detection using support vector machine
    Liu, Zaiqiang
    Lin, Dongdai
    Guo, Fengdeng
    [J]. International Journal of Network Security, 2008, 6 (03) : 301 - 308
  • [37] Support vector clustering
    Ben-Hur, A
    Horn, D
    Siegelmann, HT
    Vapnik, V
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2002, 2 (02) : 125 - 137
  • [38] Incremental local outlier detection for data streams
    Pokrajac, Dragojub
    Lazarevic, Aleksandar
    Latecki, Longin Jan
    [J]. 2007 IEEE SYMPOSIUM ON COMPUTATIONAL INTELLIGENCE AND DATA MINING, VOLS 1 AND 2, 2007, : 504 - 515
  • [39] Fuzzy Outlier analysis a combined clustering - Outlier detection approach
    Yousri, Noha A.
    Ismail, Mohammed A.
    Kamel, Mohamed S.
    [J]. 2007 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOLS 1-8, 2007, : 1776 - +
  • [40] DoS intrusion detection based on incremental learning with support vector machines
    Liu, Ye
    Wang, Zebing
    Feng, Yan
    Gu, Hongying
    [J]. Jisuanji Gongcheng/Computer Engineering, 2006, 32 (04): : 179 - 180