Carbon capture in ultra-high performance concrete using pressurized CO2 curing

被引:54
|
作者
Dixit, Anjaneya [1 ]
Du, Hongjian [1 ]
Pang, Sze Dai [1 ]
机构
[1] Natl Univ Singapore, Dept Civil & Environm Engn, Singapore 117576, Singapore
关键词
Carbon capture; Ultra-high performance concrete; Ground granulated blast furnace slag; Hydration; Carbonation; SUPERABSORBENT POLYMERS; MECHANICAL-PROPERTIES; CEMENT MORTARS; MIXTURE DESIGN; SILICA FUME; POWDER; HYDRATION; SEQUESTRATION; FINENESS; STRENGTH;
D O I
10.1016/j.conbuildmat.2021.123076
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study demonstrates a novel means of carbon capture and storage (CCS) in ultra-high performance concrete (UHPC) to reduce its carbon footprint. A two-pronged approach of developing eco-friendly UHPC was employed by 1) replacing cement in the mix with ground granulated blast furnace slag (GGBS) and 2) capturing CO2 in fresh UHPC mixes. The replacement levels of cement with GGBS were 30, 50 and 70% by weight. Samples were cured in fresh state inside a pressurized chamber using high purity CO2 for the first 16 h. The curing pressure in the chamber was maintained constant at 3 bars for the entire duration of curing. A replicate batch was allowed to cure at room temperature under ambient conditions. The ambient and carbonated samples were investigated for compressive strength, phase composition using thermo-gravimetric analysis (TGA) and X-ray diffraction (XRD). Hydration kinetics under normal conditions were monitored using isothermal calorimetry (ITC). The CO2 uptake by the samples was determined from TGA results. Carbon curing resulted in a slight decrease in the compressive strength of the UHPC mixes but substantially improved the degree of carbonation (DOC) of the mixes. Replacement of cement with GGBS further increase the DOC values. Carbon uptake was highest (80 kg CO2 per m(3) of UHPC) when using 30% by wt. GGBS, but decreased with higher GGBS content. The findings of this study are envisaged to provide a new approach towards CCS and generate further interests in developing 'greener' version of UHPCs. (C) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Early-Age Strength of Ultra-High Performance Concrete in Various Curing Conditions
    Park, Jong-Sup
    Kim, Young Jin
    Cho, Jeong-Rae
    Jeon, Se-Jin
    MATERIALS, 2015, 8 (08): : 5537 - 5553
  • [22] DIRECT TENSILE CONSTITUTIVE LAW OF ULTRA-HIGH PERFORMANCE CONCRETE WITHOUT THERMAL CURING
    Geng, Li-Ping
    Guo, Jun-Yuan
    Liu, Guo-Ping
    Wang, Jun-Yan
    1ST INTERNATIONAL CONFERENCE ON UHPC MATERIALS AND STRUCTURES, 2016, 105 : 325 - 333
  • [23] Shrinkage Mitigation of an Ultra-High Performance Concrete Submitted to Various Mixing and Curing Conditions
    Androuet, Cedric
    Charron, Jean-Philippe
    MATERIALS, 2021, 14 (14)
  • [24] Influence of early thermal curing regimes on properties of ultra-high performance concrete: A review
    Dong, Sufen
    Ouyang, Xinyu
    Yoo, Doo-Yeol
    Han, Baoguo
    JOURNAL OF BUILDING ENGINEERING, 2024, 96
  • [25] Different Curing Systems on Mechanical Properties of Ultra-High Performance Concrete with Coarse Aggregate
    赵秋
    杨明
    庄一舟
    聂宇
    Journal of Donghua University(English Edition), 2017, 34 (04) : 492 - 497
  • [26] Effects of Microwave Curing on the Mechanical Properties of Ultra-high Performance Concrete and Affecting Mechanism
    Gao X.
    Li S.
    Cailiao Daobao/Materials Review, 2019, 33 (01): : 271 - 276
  • [27] Effect of curing conditions on the durability of ultra-high performance concrete under flexural load
    Chunping Gu
    Wei Sun
    Liping Guo
    Qiannan Wang
    Journal of Wuhan University of Technology-Mater. Sci. Ed., 2016, 31 : 278 - 285
  • [28] Ultra-high performance concrete and fiber reinforced concrete: achieving strength and ductility without heat curing
    Wille, Kay
    Naaman, Antoine E.
    El-Tawil, Sherif
    Parra-Montesinos, Gustavo J.
    MATERIALS AND STRUCTURES, 2012, 45 (03) : 309 - 324
  • [29] Ultra-high performance concrete and fiber reinforced concrete: achieving strength and ductility without heat curing
    Kay Wille
    Antoine E. Naaman
    Sherif El-Tawil
    Gustavo J. Parra-Montesinos
    Materials and Structures, 2012, 45 : 309 - 324
  • [30] Ultra-high performance concrete versus ultra-high performance geopolymer concrete: Mechanical performance, microstructure, and ecological assessment
    Abdellatief, Mohamed
    Abd Elrahman, Mohamed
    Abadel, Aref A.
    Wasim, Muhammad
    Tahwia, Ahmed
    JOURNAL OF BUILDING ENGINEERING, 2023, 79