An algebra of deformation quantization for star-exponentials on complex symplectic manifolds

被引:4
|
作者
Dito, Giuseppe
Schapira, Pierre
机构
[1] Univ Bourgogne, Inst Math, F-21078 Dijon, France
[2] Univ Paris 06, Inst Math, F-75013 Paris, France
关键词
Holomorphic Function; Complex Manifold; Symplectic Manifold; Cotangent Bundle; Deformation Quantization;
D O I
10.1007/s00220-007-0250-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The cotangent bundle T * X to a complex manifold X is classically endowed with the sheaf of k- algebras W-T*X of deformation quantization, where k := W{pt} is a subfield of C[[h,h(-1)]. Here, we construct a new sheaf of k- algebras W-T*X T * X which contains W-T*X as a subalgebra and an extra central parameter t. We give the symbol calculus for this algebra and prove that quantized symplectic transformations operate on it. If P is any section of order zero of W-T*X, we show that exp(th(-1)P) is well defined in W-T*X(t).
引用
收藏
页码:395 / 414
页数:20
相关论文
共 50 条
  • [41] Weyl quantization of degree 2 symplectic graded manifolds
    Gruetzmann, Melchior
    Michel, Jean-Philippe
    Xu, Ping
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2021, 154 : 67 - 107
  • [42] Path integral quantization and Riemannian-symplectic manifolds
    Shabanov, SV
    Klauder, JR
    [J]. PHYSICS LETTERS B, 1998, 435 (3-4) : 343 - 349
  • [43] Equivalence of star-products on symplectic manifolds
    Batubenge, A
    Mabizela, S
    Beko, FT
    [J]. TOPOLOGY PROCEEDINGS, VOL 27, NO 1, 2003, 2003, : 15 - 25
  • [44] Berezin–Toeplitz Quantization on Symplectic Manifolds of Bounded Geometry
    Yu. A. Kordyukov
    [J]. Mathematical Notes, 2022, 112 : 576 - 587
  • [45] Classification of Equivariant Star Products on Symplectic Manifolds
    Reichert, Thorsten
    Waldmann, Stefan
    [J]. LETTERS IN MATHEMATICAL PHYSICS, 2016, 106 (05) : 675 - 692
  • [46] Constrained quantization on symplectic manifolds and quantum distribution functions
    Jorjadze, G
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1997, 38 (06) : 2851 - 2879
  • [47] Classification of Equivariant Star Products on Symplectic Manifolds
    Thorsten Reichert
    Stefan Waldmann
    [J]. Letters in Mathematical Physics, 2016, 106 : 675 - 692
  • [48] The Fedosov deformation quantization with the induced symplectic connection
    Tosiek, Jaromir
    [J]. 5TH INTERNATIONAL SYMPOSIUM ON QUANTUM THEORY AND SYMMETRIES QTS5, 2008, 128
  • [49] Tangential deformation quantization and polarized symplectic groupoids
    Weinstein, A
    [J]. DEFORMATION THEORY AND SYMPLECTIC GEOMETRY: PROCEEDINGS OF THE ASCONA MEETING, JUNE 1996, 1997, 20 : 301 - 314
  • [50] Symplectic and Poisson derived geometry and deformation quantization
    Pantev, Tony
    Vezzosi, Gabriele
    [J]. ALGEBRAIC GEOMETRY: SALT LAKE CITY 2015, PT 2, 2018, 97 : 405 - 457