NOAA'S HYSPLIT ATMOSPHERIC TRANSPORT AND DISPERSION MODELING SYSTEM

被引:4164
|
作者
Stein, A. F. [1 ]
Draxler, R. R. [1 ]
Rolph, G. D. [1 ]
Stunder, B. J. B. [1 ]
Cohen, M. D. [1 ]
Ngan, F. [1 ,2 ]
机构
[1] NOAA, Air Resources Lab, College Pk, MD 20740 USA
[2] Cooperat Inst Climate & Satellites, College Pk, MD USA
关键词
VOLCANIC ASH FORECAST; SOURCE PARAMETERS; SIZE DISTRIBUTION; CLUSTER-ANALYSIS; CLOUD TRANSPORT; MERCURY MODELS; NUCLEAR-TEST; DUST STORMS; DEPOSITION; SENSITIVITY;
D O I
10.1175/BAMS-D-14-00110.1
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT), developed by NOAA's Air Resources Laboratory, is one of the most widely used models for atmospheric trajectory and dispersion calculations. We present the model's historical evolution over the last 30 years from simple hand-drawn back trajectories to very sophisticated computations of transport, mixing, chemical transformation, and deposition of pollutants and hazardous materials. We highlight recent applications of the HYSPLIT modeling system, including the simulation of atmospheric tracer release experiments, radionuclides, smoke originated from wild fires, volcanic ash, mercury, and wind-blown dust.
引用
收藏
页码:2059 / 2077
页数:19
相关论文
共 50 条
  • [41] An Atmospheric Dispersion Modeling Microservice for HazMat Transportation
    Cherradi, Ghyzlane
    El Bouziri, Adil
    Boulmakoul, Azedine
    Zeitouni, Karine
    [J]. 9TH INTERNATIONAL CONFERENCE ON AMBIENT SYSTEMS, NETWORKS AND TECHNOLOGIES (ANT 2018) / THE 8TH INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY INFORMATION TECHNOLOGY (SEIT-2018) / AFFILIATED WORKSHOPS, 2018, 130 : 526 - 532
  • [43] MODELING TRANSPORT AND DISPERSION OF EFFLUENT OUTFALLS
    MONTEIRO, AJ
    NEVES, RJ
    SOUSA, ER
    [J]. WATER SCIENCE AND TECHNOLOGY, 1992, 25 (09) : 143 - 154
  • [44] Calculation of the far range atmospheric transport of radionuclides after the Fukushima accident with the atmospheric dispersion model MATCH of the JRODOS system
    Kovalets, Ivan V.
    Robertson, Lennart
    Persson, Christer
    Didkivska, Svitlana N.
    Ievdin, Ievgen A.
    Trybushnyi, Dmytro
    [J]. INTERNATIONAL JOURNAL OF ENVIRONMENT AND POLLUTION, 2014, 54 (2-4) : 101 - 109
  • [45] SIMULATION OF ATMOSPHERIC DISPERSION ON A TRANSPUTER SYSTEM
    GOTTWALD, S
    [J]. SUPERCOMPUTER, 1992, 9 (01): : 43 - 50
  • [46] MODELING ATMOSPHERIC TRANSPORT TO THE MARSHALL ISLANDS
    MERRILL, JT
    BLECK, R
    AVILA, L
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1985, 90 (D7) : 2927 - 2936
  • [47] Identification of atmospheric transport and dispersion of Asian dust storms
    Ha, Raegyung
    Baatar, Amarjargal
    Yu, Yongjae
    [J]. NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2017, 17 (08) : 1425 - 1435
  • [48] Atmospheric transport reveals grass pollen dispersion distances
    Frisk, Carl A.
    Apangu, Godfrey P.
    Petch, Geoffrey M.
    Adams-Groom, Beverley
    Skjoth, Carsten A.
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 814
  • [49] Atmospheric dispersion - What's new?
    Havens, J
    [J]. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2004, 82 (B5) : 329 - 330
  • [50] Ensemble PM2.5 Forecasting During the 2018 Camp Fire Event Using the HYSPLIT Transport and Dispersion Model
    Li, Y.
    Tong, D. Q.
    Ngan, F.
    Cohen, M. D.
    Stein, A. F.
    Kondragunta, S.
    Zhang, X.
    Ichoku, C.
    Hyer, E. J.
    Kahn, R. A.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (15)