Bayesian GWAS and network analysis revealed new candidate genes for number of teats in pigs

被引:41
|
作者
Verardo, L. L. [1 ]
Silva, F. F. [1 ]
Varona, L. [2 ]
Resende, M. D. V. [3 ]
Bastiaansen, J. W. M. [4 ]
Lopes, P. S. [1 ]
Guimares, S. E. F. [1 ]
机构
[1] Univ Fed Vicosa, Dept Anim Sci, Vicosa, MG, Brazil
[2] Univ Zaragoza, Dept Anat Embriol & Genet, Zaragoza, Spain
[3] Embrapa Florestas, Colombo, PR, Brazil
[4] Wageningen Univ, Anim Breeding & Genom Ctr, NL-6700 AP Wageningen, Netherlands
关键词
Counting data; Genes; Reproductive traits; SNP association; QUANTITATIVE TRAIT LOCI; STRESS-SYNDROME GENE; MESSENGER-RNA; MIXED MODELS; R-PACKAGE; SNP; ASSOCIATION; RECEPTOR; IDENTIFICATION; EXPRESSION;
D O I
10.1007/s13353-014-0240-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The genetic improvement of reproductive traits such as the number of teats is essential to the success of the pig industry. As opposite to most SNP association studies that consider continuous phenotypes under Gaussian assumptions, this trait is characterized as a discrete variable, which could potentially follow other distributions, such as the Poisson. Therefore, in order to access the complexity of a counting random regression considering all SNPs simultaneously as covariate under a GWAS modeling, the Bayesian inference tools become necessary. Currently, another point that deserves to be highlighted in GWAS is the genetic dissection of complex phenotypes through candidate genes network derived from significant SNPs. We present a full Bayesian treatment of SNP association analysis for number of teats assuming alternatively Gaussian and Poisson distributions for this trait. Under this framework, significant SNP effects were identified by hypothesis tests using 95 % highest posterior density intervals. These SNPs were used to construct associated candidate genes network aiming to explain the genetic mechanism behind this reproductive trait. The Bayesian model comparisons based on deviance posterior distribution indicated the superiority of Gaussian model. In general, our results suggest the presence of 19 significant SNPs, which mapped 13 genes. Besides, we predicted gene interactions through networks that are consistent with the mammals known breast biology (e.g., development of prolactin receptor signaling, and cell proliferation), captured known regulation binding sites, and provided candidate genes for that trait (e.g., TINAGL1 and ICK).
引用
收藏
页码:123 / 132
页数:10
相关论文
共 50 条
  • [41] New LUTO-candidate genes identified by systematic analysis of copy number variations in 152 patients
    Schierbaum, L. M.
    Fabian, J.
    Herms, S.
    Sivalingam, S.
    Schneider, S.
    Weber, S.
    Roesch, W.
    Merz, W. M.
    Feldkotter, M.
    Reutter, H.
    Hoppe, B.
    Schalk, G.
    Zaniew, M.
    Hilger, A.
    [J]. EUROPEAN JOURNAL OF HUMAN GENETICS, 2020, 28 (SUPPL 1) : 221 - 221
  • [42] Identification of candidate genes and SNPs related to cattle temperament using a GWAS analysis together with an analysis of interacting networks
    Alejandro Paredes-Sanchez, Francisco
    Maria Sifuentes-Rincon, Ana
    Eduardo Lara-Ramirez, Edgar
    Casas, Eduardo
    Alonso Rodriguez-Almeida, Felipe
    Veronica Herrera-Mayorga, Elsa
    Randel, Ronald D.
    [J]. REVISTA MEXICANA DE CIENCIAS PECUARIAS, 2023, 14 (01) : 1 - 22
  • [43] After genome-wide association studies: Gene networks elucidating candidate genes divergences for number of teats across two pig populations
    Verardo, L. L.
    Lopes, M. S.
    Wijga, S.
    Madsen, O.
    Silva, F. F.
    Groenen, M. A. M.
    Knol, E. F.
    Lopes, P. S.
    Guimaraes, S. E. F.
    [J]. JOURNAL OF ANIMAL SCIENCE, 2016, 94 (04) : 1446 - 1458
  • [44] Linkage analysis, GWAS, transcriptome analysis to identify candidate genes for rice seedlings in response to high temperature stress
    Wei, Zhaoran
    Yuan, Qiaoling
    Lin, Hai
    Li, Xiaoxia
    Zhang, Chao
    Gao, Hongsheng
    Zhang, Bin
    He, Huiying
    Liu, Tianjiao
    Jie, Zhang
    Gao, Xu
    Shi, Shandang
    Wang, Bo
    Gao, Zhenyu
    Kong, Lingrang
    Qian, Qian
    Shang, Lianguang
    [J]. BMC PLANT BIOLOGY, 2021, 21 (01)
  • [45] Linkage analysis, GWAS, transcriptome analysis to identify candidate genes for rice seedlings in response to high temperature stress
    Zhaoran Wei
    Qiaoling Yuan
    Hai Lin
    Xiaoxia Li
    Chao Zhang
    Hongsheng Gao
    Bin Zhang
    Huiying He
    Tianjiao Liu
    Zhang Jie
    Xu Gao
    Shandang Shi
    Bo Wang
    Zhenyu Gao
    Lingrang Kong
    Qian Qian
    Lianguang Shang
    [J]. BMC Plant Biology, 21
  • [46] Multi-Trait GWAS and New Candidate Genes Annotation for Growth Curve Parameters in Brahman Cattle
    Crispim, Aline Camporez
    Kelly, Matthew John
    Facioni Guimaraes, Simone Eliza
    Fonseca e Silva, Fabyano
    Salinas Fortes, Marina Rufino
    Wenceslau, Raphael Rocha
    Moore, Stephen
    [J]. PLOS ONE, 2015, 10 (10):
  • [47] Microarray analysis of eosinophils reveals a number of candidate survival and apoptosis genes
    Temple, R
    Allen, E
    Fordham, J
    Phipps, S
    Schneider, HC
    Lindauer, K
    Hayes, I
    Lockey, J
    Pollock, K
    Jupp, R
    [J]. AMERICAN JOURNAL OF RESPIRATORY CELL AND MOLECULAR BIOLOGY, 2001, 25 (04) : 425 - 433
  • [48] Identification of new single nucleotide polymorphisms affecting total number born and candidate genes related to ovulation rate in Chinese Erhualian pigs
    He, L. C.
    Li, P. H.
    Ma, X.
    Sui, S. P.
    Gao, S.
    Kim, S. W.
    Gu, Y. Q.
    Huang, Y.
    Ding, N. S.
    Huang, R. H.
    [J]. ANIMAL GENETICS, 2017, 48 (01) : 48 - 54
  • [49] NETWORK ANALYSIS APPROACH TO FIND NEW CANDIDATE GENES AND PATHWAYS INVOLVED IN THE PATHOPHYSIOLOGY OF FAMILIAL HYPERCHOLESTEROLEMIA
    Rossi, N.
    Bourbon, M.
    Enguita, F.
    [J]. ATHEROSCLEROSIS, 2016, 252 : E50 - E50
  • [50] Novel tuberculosis susceptibility candidate genes revealed by the reconstruction and analysis of associative networks
    Bragina, Elena Yu.
    Tiys, Evgeny S.
    Rudko, Alexey A.
    Ivanisenko, Vladimir A.
    Freidin, MaximB.
    [J]. INFECTION GENETICS AND EVOLUTION, 2016, 46 : 118 - 123