Bayesian GWAS and network analysis revealed new candidate genes for number of teats in pigs

被引:41
|
作者
Verardo, L. L. [1 ]
Silva, F. F. [1 ]
Varona, L. [2 ]
Resende, M. D. V. [3 ]
Bastiaansen, J. W. M. [4 ]
Lopes, P. S. [1 ]
Guimares, S. E. F. [1 ]
机构
[1] Univ Fed Vicosa, Dept Anim Sci, Vicosa, MG, Brazil
[2] Univ Zaragoza, Dept Anat Embriol & Genet, Zaragoza, Spain
[3] Embrapa Florestas, Colombo, PR, Brazil
[4] Wageningen Univ, Anim Breeding & Genom Ctr, NL-6700 AP Wageningen, Netherlands
关键词
Counting data; Genes; Reproductive traits; SNP association; QUANTITATIVE TRAIT LOCI; STRESS-SYNDROME GENE; MESSENGER-RNA; MIXED MODELS; R-PACKAGE; SNP; ASSOCIATION; RECEPTOR; IDENTIFICATION; EXPRESSION;
D O I
10.1007/s13353-014-0240-y
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The genetic improvement of reproductive traits such as the number of teats is essential to the success of the pig industry. As opposite to most SNP association studies that consider continuous phenotypes under Gaussian assumptions, this trait is characterized as a discrete variable, which could potentially follow other distributions, such as the Poisson. Therefore, in order to access the complexity of a counting random regression considering all SNPs simultaneously as covariate under a GWAS modeling, the Bayesian inference tools become necessary. Currently, another point that deserves to be highlighted in GWAS is the genetic dissection of complex phenotypes through candidate genes network derived from significant SNPs. We present a full Bayesian treatment of SNP association analysis for number of teats assuming alternatively Gaussian and Poisson distributions for this trait. Under this framework, significant SNP effects were identified by hypothesis tests using 95 % highest posterior density intervals. These SNPs were used to construct associated candidate genes network aiming to explain the genetic mechanism behind this reproductive trait. The Bayesian model comparisons based on deviance posterior distribution indicated the superiority of Gaussian model. In general, our results suggest the presence of 19 significant SNPs, which mapped 13 genes. Besides, we predicted gene interactions through networks that are consistent with the mammals known breast biology (e.g., development of prolactin receptor signaling, and cell proliferation), captured known regulation binding sites, and provided candidate genes for that trait (e.g., TINAGL1 and ICK).
引用
收藏
页码:123 / 132
页数:10
相关论文
共 50 条
  • [1] Bayesian GWAS and network analysis revealed new candidate genes for number of teats in pigs
    L. L. Verardo
    F. F. Silva
    L. Varona
    M. D. V. Resende
    J. W. M. Bastiaansen
    P. S. Lopes
    S. E. F. Guimarães
    [J]. Journal of Applied Genetics, 2015, 56 : 123 - 132
  • [2] Functional analysis of litter size and number of teats in pigs: From GWAS to post-GWAS
    Martins, Tania Fernandes
    Magalhaes, Ana Fabricia Braga
    Verardo, Lucas Lima
    Santos, Geovana Cristina
    Fernandes, Aline Auxiliadora Silva
    Vieira, Joao Inacio Gomes
    Irano, Natalia
    dos Santos, Danielly Beraldo
    [J]. THERIOGENOLOGY, 2022, 193 : 157 - 166
  • [3] Revealing new candidate genes for reproductive traits in pigs: combining Bayesian GWAS and functional pathways
    Verardo, Lucas L.
    Silva, Fabyano F.
    Lopes, Marcos S.
    Madsen, Ole
    Bastiaansen, John W. M.
    Knol, Egbert F.
    Kelly, Mathew
    Varona, Luis
    Lopes, Paulo S.
    Guimaraes, Simone E. F.
    [J]. GENETICS SELECTION EVOLUTION, 2016, 48
  • [4] Revealing new candidate genes for reproductive traits in pigs: combining Bayesian GWAS and functional pathways
    Lucas L. Verardo
    Fabyano F. Silva
    Marcos S. Lopes
    Ole Madsen
    John W. M. Bastiaansen
    Egbert F. Knol
    Mathew Kelly
    Luis Varona
    Paulo S. Lopes
    Simone E. F. Guimarães
    [J]. Genetics Selection Evolution, 48
  • [5] Weighted single-step GWAS and gene network analysis reveal new candidate genes for semen traits in pigs
    Daniele B. D. Marques
    John W. M. Bastiaansen
    Marleen L. W. J. Broekhuijse
    Marcos S. Lopes
    Egbert F. Knol
    Barbara Harlizius
    Simone E. F. Guimarães
    Fabyano F. Silva
    Paulo S. Lopes
    [J]. Genetics Selection Evolution, 50
  • [6] Weighted single-step GWAS and gene network analysis reveal new candidate genes for semen traits in pigs
    Marques, Daniele B. D.
    Bastiaansen, John W. M.
    Broekhuijse, Marleen L. W. J.
    Lopes, Marcos S.
    Knol, Egbert F.
    Harlizius, Barbara
    Guimaraes, Simone E. F.
    Silva, Fabyano F.
    Lopes, Paulo S.
    [J]. GENETICS SELECTION EVOLUTION, 2018, 50
  • [7] Genome-wide association analysis revealed new QTL and candidate genes affecting the teat number in Dutch Large White pigs
    Deng, Michao
    Qiu, Zijian
    Liu, Chenxi
    Zhong, Lijing
    Fan, Xinfeng
    Han, Yuquan
    Wang, Ran
    Li, Pinghua
    Huang, Ruihua
    Zhao, Qingbo
    [J]. ANIMAL GENETICS, 2024, 55 (02) : 206 - 216
  • [8] An Integrative Analysis of Transcriptome and GWAS Data to Identify Potential Candidate Genes Influencing Meat Quality Traits in Pigs
    Liu, Xianxian
    Zhang, Junjie
    Xiong, Xinwei
    Chen, Congying
    Xing, Yuyun
    Duan, Yanyu
    Xiao, Shijun
    Yang, Bin
    Ma, Junwu
    [J]. FRONTIERS IN GENETICS, 2021, 12
  • [9] Comprehensive Analysis of Alzheimer's Disease Biologically Candidate Causal Genes Revealed by Function Association Study With GWAS
    Bin, Yannan
    Zhu, Qizhi
    Li, Menglu
    Xia, Junfeng
    [J]. IEEE ACCESS, 2019, 7 : 114236 - 114245
  • [10] Identification of Candidate Genes for Economically Important Carcass Cutting in Commercial Pigs through GWAS
    Zhou, Fuchen
    Quan, Jianping
    Ruan, Donglin
    Qiu, Yibin
    Ding, Rongrong
    Xu, Cineng
    Ye, Yong
    Cai, Gengyuan
    Liu, Langqing
    Zhang, Zebin
    Yang, Jie
    Wu, Zhenfang
    Zheng, Enqin
    [J]. ANIMALS, 2023, 13 (20):