PORTFOLIO OPTIMISATION BEYOND SEMIMARTINGALES: SHADOW PRICES AND FRACTIONAL BROWNIAN MOTION

被引:16
|
作者
Czichowsky, Christoph [1 ]
Schachermayer, Walter [2 ]
机构
[1] London Sch Econ & Polit Sci, Dept Math, Columbia House,Houghton St, London WC2A 2AE, England
[2] Univ Vienna, Fak Math, Oskar Morgenstern Pl 1, A-1090 Vienna, Austria
来源
ANNALS OF APPLIED PROBABILITY | 2017年 / 27卷 / 03期
基金
欧洲研究理事会; 奥地利科学基金会; 瑞士国家科学基金会;
关键词
Portfolio choice; non-semimartingale price processes; fractional Brownian motion; proportional transaction costs; utilities on the whole real line; exponential utility; shadow price; convex duality; stickiness; optimal trading strategies; UTILITY MAXIMIZATION; OPTIMAL INVESTMENT; TRANSACTION COSTS; FUNDAMENTAL THEOREM; INCOMPLETE MARKETS; CONSUMPTION; MARTINGALE; ARBITRAGE; PROPERTY; DUALITY;
D O I
10.1214/16-AAP1234
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
processes to be semimartingales, non-semimartingales can be used to model prices in an arbitrage-free way, if proportional transaction costs are taken into account. In this paper we show, for a class of price processes which are not necessarily semimartingales, the existence of an optimal trading strategy for utility maximisation under transaction costs by establishing the existence of a so-called shadow price. This is a semimartingale price process, taking values in the bid ask spread, such that frictionless trading for that price process leads to the same optimal strategy and utility as the original problem under transaction costs. Our results combine arguments from convex duality with the stickiness condition introduced by P. Guasoni. They apply in particular to exponential utility and geometric fractional Brownian motion. In this case, the shadow price is an Ito process. As a consequence, we obtain a rather surprising result on the pathwise behaviour of fractional Brownian motion: the trajectories may touch an Ito process in a one-sided manner without reflection.
引用
收藏
页码:1414 / 1451
页数:38
相关论文
共 50 条
  • [31] Mixed fractional Brownian motion
    Cheridito, P
    [J]. BERNOULLI, 2001, 7 (06) : 913 - 934
  • [32] The multiparameter fractional Brownian motion
    Herbin, Erick
    Merzbach, Ely
    [J]. MATH EVERYWHERE: DETERMINISTIC AND STOCHASTIC MODELLING IN BIOMEDICINE, ECONOMICS AND INDUSTRY, 2007, : 93 - +
  • [33] Piecewise fractional Brownian motion
    Perrin, E
    Harba, R
    Iribarren, I
    Jennane, R
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2005, 53 (03) : 1211 - 1215
  • [34] On Fractional Brownian Motion and Wavelets
    S. Albeverio
    P. E. T. Jorgensen
    A. M. Paolucci
    [J]. Complex Analysis and Operator Theory, 2012, 6 : 33 - 63
  • [35] Simulation of fractional brownian motion
    Ruemelin, W.
    [J]. Proceedings of the IFIP Conference on Fractals in the Fundamental and Applied Sciences, 1991,
  • [36] On the Generalized Fractional Brownian Motion
    Zili M.
    [J]. Mathematical Models and Computer Simulations, 2018, 10 (6) : 759 - 769
  • [37] Arbitrage with fractional Brownian motion
    Rogers, LCG
    [J]. MATHEMATICAL FINANCE, 1997, 7 (01) : 95 - 105
  • [38] A Note on the Fractional Integrated Fractional Brownian Motion
    Charles El-Nouty
    [J]. Acta Applicandae Mathematica, 2003, 78 : 103 - 114
  • [39] Comparison of scattering from fractional Brownian motion and asymptotic fractional Brownian motion rough surfaces
    Zhang, YD
    Wu, ZS
    [J]. 2003 6TH INTERNATIONAL SYMPOSIUM ON ANTENNAS, PROPAGATION AND EM THEORY, PROCEEDINGS, 2003, : 496 - 499
  • [40] FRACTIONAL MARTINGALES AND CHARACTERIZATION OF THE FRACTIONAL BROWNIAN MOTION
    Hu, Yaozhong
    Nualart, David
    Song, Jian
    [J]. ANNALS OF PROBABILITY, 2009, 37 (06): : 2404 - 2430