Complexity Classification of Two-Qubit Commuting Hamiltonians

被引:2
|
作者
Bouland, Adam [1 ]
Mancinska, Laura [2 ]
Zhang, Xue [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
[2] Natl Univ Singapore, Ctr Quantum Technol, Singapore, Singapore
基金
美国国家科学基金会; 新加坡国家研究基金会;
关键词
Quantum Computing; Sampling Problems; Commuting Hamiltonians; IQP; Gate Classification Theorems; QUANTUM CIRCUITS; UNIVERSALITY; COMPUTATION;
D O I
10.4230/LIPIcs.CCC.2016.28
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We classify two-qubit commuting Hamiltonians in terms of their computational complexity. Suppose one has a two-qubit commuting Hamiltonian H which one can apply to any pair of qubits, starting in a computational basis state. We prove a dichotomy theorem: either this model is efficiently classically simulable or it allows one to sample from probability distributions which cannot be sampled from classically unless the polynomial hierarchy collapses. Furthermore, the only simulable Hamiltonians are those which fail to generate entanglement. This shows that generic two-qubit commuting Hamiltonians can be used to perform computational tasks which are intractable for classical computers under plausible assumptions. Our proof makes use of new postselection gadgets and Lie theory.
引用
收藏
页数:33
相关论文
共 50 条
  • [41] Coherence and entanglement in a two-qubit system
    Orszag, Miguel
    Hernandez, Maritza
    [J]. ADVANCES IN OPTICS AND PHOTONICS, 2010, 2 (02): : 229 - 286
  • [42] ZZ Freedom in Two-Qubit Gates
    Xu, Xuexin
    Ansari, M. H.
    [J]. PHYSICAL REVIEW APPLIED, 2021, 15 (06)
  • [43] Multiple two-qubit operations for a coupled semiconductor charge qubit
    Fujisawa, Toshimasa
    Shinkai, Gou
    Hayashi, Toshiaki
    Ota, Takeshi
    [J]. PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2011, 43 (03): : 730 - 734
  • [44] CLASSICALITY WITNESS FOR TWO-QUBIT STATES
    Maziero, Jonas
    Serra, Roberto M.
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2012, 10 (03)
  • [45] Symmetric extension of two-qubit states
    Chen, Jianxin
    Ji, Zhengfeng
    Kribs, David
    Luetkenhaus, Norbert
    Zeng, Bei
    [J]. PHYSICAL REVIEW A, 2014, 90 (03):
  • [46] Finding small two-qubit circuits
    Shende, VV
    Markov, IL
    Bullock, SS
    [J]. QUANTUM INFORMATION AND COMPUTATION II, 2004, 5436 : 348 - 359
  • [47] ENTANGLEMENT OF TWO-QUBIT NONORTHOGONAL STATES
    Berrada, K.
    Chafik, A.
    Eleuch, H.
    Hassouni, Y.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2009, 23 (08): : 2021 - 2027
  • [48] Decoherence control: Universal protection of two-qubit states and two-qubit gates using continuous driving fields
    Chaudhry, Adam Zaman
    Gong, Jiangbin
    [J]. PHYSICAL REVIEW A, 2012, 85 (01):
  • [49] Entropy of field interacting with two two-qubit atoms
    刘堂昆
    陶宇
    单传家
    刘继兵
    [J]. Chinese Physics B, 2018, 27 (09) : 184 - 187
  • [50] Two-qubit correlation in two independent environments with indefiniteness
    Ban, Masashi
    [J]. PHYSICS LETTERS A, 2021, 385