Harmonic oscillator with minimal length uncertainty relations and ladder operators

被引:70
|
作者
Dadic, I [1 ]
Jonke, L [1 ]
Meljanac, S [1 ]
机构
[1] Rudjer Boskovic Inst, Div Theoret Phys, HR-10002 Zagreb, Croatia
关键词
D O I
10.1103/PhysRevD.67.087701
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We construct creation and annihilation operators for deformed harmonic oscillators with minimal length uncertainty relations. We discuss a possible generalization to a large class of deformations of canonical commutation relations. We also discuss the dynamical symmetry of a noncommutative harmonic oscillator.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Generalized relativistic harmonic oscillator in minimal length quantum mechanics
    Castro, L. B.
    Obispo, A. E.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2017, 50 (28)
  • [22] The Harmonic Oscillator in the Classical Limit of a Minimal-Length Scenario
    Quintela, T. S., Jr.
    Fabris, J. C.
    Nogueira, J. A.
    [J]. BRAZILIAN JOURNAL OF PHYSICS, 2016, 46 (06) : 777 - 783
  • [23] Statistical aspects of harmonic oscillator under minimal length supposition
    Matin, L. Farhang
    Miraboutalebi, S.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 425 : 10 - 17
  • [24] The Harmonic Oscillator in the Classical Limit of a Minimal-Length Scenario
    T. S. Quintela
    J. C. Fabris
    J. A. Nogueira
    [J]. Brazilian Journal of Physics, 2016, 46 : 777 - 783
  • [25] Uncertainty relations for modified isotropic harmonic oscillator and Coulomb potentials
    Patil, S. H.
    Sen, K. D.
    [J]. PHYSICS LETTERS A, 2007, 362 (2-3) : 109 - 114
  • [26] NOISE-DEPENDENT UNCERTAINTY RELATIONS FOR THE HARMONIC-OSCILLATOR
    HALL, MJW
    [J]. PHYSICAL REVIEW A, 1994, 49 (01): : 42 - 47
  • [27] Algebraic solution and thermodynamic properties for the oneand two-dimensional Dirac oscillator with minimal length uncertainty relations
    Dagoudo, Leonie
    Dossa, Finagnon Anselme
    Avossevou, Gabriel Yves Hugues
    [J]. EPL, 2024, 147 (01)
  • [28] Harmonic oscillator with minimal length, minimal momentum, and maximal momentum uncertainties in SUSYQM framework
    Asghari, M.
    Pedram, P.
    Nozari, K.
    [J]. PHYSICS LETTERS B, 2013, 725 (4-5) : 451 - 455
  • [29] Constants of motion, ladder operators and supersymmetry of the two-dimensional isotropic harmonic oscillator
    Mota, RD
    Granados, VD
    Queijeiro, A
    García, J
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (12): : 2979 - 2984
  • [30] FRANCK-CONDON FACTORS AND LADDER OPERATORS .1. HARMONIC-OSCILLATOR
    PALMA, A
    MORALES, J
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1983, : 393 - 400