Mechanisms of guanylin action via cyclic GMP in the kidney

被引:43
|
作者
Forte, LR [1 ]
London, RM
Krause, WJ
Freeman, RH
机构
[1] Harry S Truman Mem Vet Hosp, Columbia, MO 65212 USA
[2] Univ Missouri, Sch Med, Dept Pharmacol, Columbia, MO 65212 USA
[3] Univ Missouri, Sch Med, Dept Pathol, Columbia, MO 65212 USA
[4] Univ Missouri, Sch Med, Dept Anat Sci, Columbia, MO 65212 USA
[5] Univ Missouri, Sch Med, Dept Physiol, Columbia, MO 65212 USA
关键词
uroguanylin; lymphoguanylin; E. coli heat-stable enterotoxin; guanylate cyclase; intestine;
D O I
10.1146/annurev.physiol.62.1.673
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
Guanylin, uroguanylin, and lymphoguanylin are small peptides that activate cell-surface guanylate cyclase receptors and influence cellular function via intracellular cGMP. Guanylins activate two receptors, GC-C and OK-GC, which are expressed in intestine and/or kidney. Elevation of cCMP in the intestine elicits an increase in electrolyte and water secretion. Activation of renal receptors by uroguanylin stimulates urine flow and excretion of sodium, chloride, and potassium. Intracellular cGMP pathways for guanylins include activation of PKG-II and/or indirect stimulation of PKA-II. The result is activation of CFTR and/or ClC-2 channel proteins to enhance the electrogenic secretion of chloride and bicarbonate. Similar cellular mechanisms may be involved in the renal responses to guanylin peptides. Uroguanylin serves as an intestinal natriuretic hormone in postprandial states, thus linking the digestive and renal organ systems in a novel endocrine axis. Therefore, uroguanylin participates in the complex physiological processes underlying the saliuresis that is elicited by a salty meal.
引用
收藏
页码:673 / 695
页数:23
相关论文
共 50 条
  • [41] The influence of toxic action of glutamate and nitrite on the level of cyclic GMP in neurons and their viability
    Pinelis, VG
    Sorokina, EG
    Reutov, VP
    Vinskaya, NP
    Isaev, NK
    Viktorov, IV
    DOKLADY AKADEMII NAUK, 1997, 352 (02) : 259 - 261
  • [42] Separation of cyclic GMP and cyclic AMP
    Villegas, S
    Brunton, LL
    ANALYTICAL BIOCHEMISTRY, 1996, 235 (01) : 102 - 103
  • [43] CYCLIC-GMP AS A POSSIBLE MESSENGER FOR ERYTHROPOIETIN ACTION IN FETAL LIVER CULTURE
    WHITE, LA
    RODGERS, GM
    HOWLEY, PS
    FISHER, JW
    GEORGE, WJ
    PHARMACOLOGIST, 1975, 17 (02): : 269 - 269
  • [44] OSTEOCLASTIC INHIBITION - AN ACTION OF NITRIC-OXIDE NOT MEDIATED BY CYCLIC-GMP
    MACINTYRE, I
    ZAIDI, M
    ALAM, ASMT
    DATTA, HK
    MOONGA, BS
    LIDBURY, PS
    HECKER, M
    VANE, JR
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1991, 88 (07) : 2936 - 2940
  • [45] ACTION OF MORPHINE IN REGULATION OF CYCLIC-GMP (CGMP) CONTENT OF RAT CEREBELLUM
    BIGGIO, G
    GUIDOTTI, A
    PHARMACOLOGIST, 1976, 18 (02): : 212 - 212
  • [46] Negative inotropic action of peroxynitrite:: role of myofilament desensitisation and NO/cyclic GMP pathway
    Wölkart, G
    Brunner, F
    EUROPEAN HEART JOURNAL, 2003, 24 : 665 - 665
  • [47] STUDY OF ACTION OF NOREPINEPHRINE, GABA AND GLUTAMATE ON CYCLIC-GMP LEVEL OF CEREBELLUM
    HAIDAMOUS, M
    LACOMBE, C
    GONNARD, P
    JOURNAL DE PHARMACOLOGIE, 1980, 11 (01) : 122 - 122
  • [48] Nitric oxide induces muscular relaxation via cyclic GMP-dependent and -independent mechanisms in the longitudinal muscle of the mouse duodenum
    Serio, R
    Zizzo, MG
    Mulè, F
    NITRIC OXIDE-BIOLOGY AND CHEMISTRY, 2003, 8 (01): : 48 - 52
  • [49] Cyclic GMP transporters
    Sager, G
    NEUROCHEMISTRY INTERNATIONAL, 2004, 45 (06) : 865 - 873
  • [50] CYCLIC GMP AND ERYTHROPOIESIS
    RODGERS, GM
    FISHER, JW
    GEORGE, WJ
    PHARMACOLOGIST, 1974, 16 (02): : 309 - 309