Conceptual design of an experiment to study dust destruction by astrophysical shock waves

被引:2
|
作者
Manuel, M. J. -E. [1 ]
Temim, T. [2 ]
Dwek, E. [3 ]
Angulo, A. M. [4 ]
Belancourt, P. X. [4 ]
Drake, R. P. [4 ]
Kuranz, C. C. [4 ]
MacDonald, M. J. [5 ]
Remington, B. A. [6 ]
机构
[1] Gen Atom, 3550 Gen Atom Court, San Diego, CA 92121 USA
[2] Space Telescope Sci Inst, 3700 San Martin Dr, Baltimore, MD 21218 USA
[3] NASA, Goddard Space Flight Ctr, Observat Cosmol Lab, Code 665, Greenbelt, MD 20771 USA
[4] Univ Michigan, Climate & Space Sci & Engn, Ann Arbor, MI 48109 USA
[5] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[6] Lawrence Livermore Natl Lab, Livermore, CA 94450 USA
关键词
laboratory astrophysics; shock waves; dust destruction;
D O I
10.1017/hpl.2018.38
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A novel laboratory experimental design is described that will investigate the processing of dust grains in astrophysical shocks. Dust is a ubiquitous ingredient in the interstellar medium (ISM) of galaxies; however, its evolutionary cycle is still poorly understood. Especially shrouded in mystery is the efficiency of grain destruction by astrophysical shocks generated by expanding supernova remnants. While the evolution of these remnants is fairly well understood, the grain destruction efficiency in these shocks is largely unknown. The experiments described herein will fill this knowledge gap by studying the dust destruction efficiencies for shock velocities in the range diameter) population; this simulates the astrophysical system well in that the more numerous, small grains impact and collide with the large population. Facilities that combine the versatility of high-power optical lasers with the diagnostic capabilities of X-ray free-electron lasers, e.g., the Matter in Extreme Conditions instrument at the SLAC National Accelerator Laboratory, provide an ideal laboratory environment to create and diagnose dust destruction by astrophysically relevant shocks at the micron scale.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Mechanism of Microorganism Destruction by the Influence of Shock Waves
    Dashkovskii, Yu. A.
    SURFACE ENGINEERING AND APPLIED ELECTROCHEMISTRY, 2009, 45 (05) : 420 - 423
  • [22] Dust destruction by the reverse shock in the Cassiopeia A supernova remnant
    Micelotta, Elisabetta R.
    Dwek, Eli
    Slavin, Jonathan D.
    ASTRONOMY & ASTROPHYSICS, 2016, 590
  • [23] Conceptual Design of the SPASCHARM Experiment
    V. V. Abramov
    I. L. Azhgirey
    A. A. Borisov
    S. I. Bukreeva
    A. N. Vasiliev
    V. I. Garkusha
    Yu. M. Goncharenko
    A. M. Gorin
    A. A. Derevshchikov
    V. N. Zapolsky
    A. N. Isaev
    N. K. Kalugin
    V. A. Kachanov
    A. S. Kozhin
    A. K. Likhoded
    A. V. Luchinsky
    E. V. Maslova
    V. A. Maisheev
    Yu. M. Melnik
    A. P. Meshchanin
    N. G. Minaev
    V. V. Moiseev
    D. A. Morozov
    V. V. Mochalov
    K. D. Novikov
    L. V. Nogach
    S. V. Poslavsky
    A. F. Prudkoglyad
    S. V. Ryzhikov
    V. I. Rykalin
    A. D. Ryabov
    T. D. Ryabova
    A. V. Ryazantsev
    P. A. Semenov
    V. A. Senko
    S. R. Slabospitsky
    M. M. Soldatov
    L. F. Solovyov
    A. V. Uzunyan
    R. M. Fakhrutdinov
    N. A. Shalanda
    V. I. Yakimchuk
    A. E. Yakutin
    N. A. Bazhanov
    D. V. Belov
    N. S. Borisov
    V. P. Volnykh
    S. V. Goloskokov
    I. S. Gorodnov
    A. S. Dolzhikov
    Physics of Particles and Nuclei, 2023, 54 : 69 - 184
  • [24] Effect of nonadiabaticity of dust charge variation on dust acoustic waves: Generation of dust acoustic shock waves
    Gupta, MR
    Sarkar, S
    Ghosh, S
    Debnath, M
    Khan, M
    PHYSICAL REVIEW E, 2001, 63 (04):
  • [25] Conceptual Design of the SPASCHARM Experiment
    Abramov, V. V.
    Azhgirey, I. L.
    Borisov, A. A.
    Bukreeva, S. I.
    Vasiliev, A. N.
    Garkusha, V. I.
    Goncharenko, Yu. M.
    Gorin, A. M.
    Derevshchikov, A. A.
    Zapolsky, V. N.
    Isaev, A. N.
    Kalugin, N. K.
    Kachanov, V. A.
    Kozhin, A. S.
    Likhoded, A. K.
    Luchinsky, A. V.
    Maslova, E. V.
    Maisheev, V. A.
    Melnik, Yu. M.
    Meshchanin, A. P.
    Minaev, N. G.
    Moiseev, V. V.
    Morozov, D. A.
    Mochalov, V. V.
    Novikov, K. D.
    Nogach, L. V.
    Poslavsky, S. V.
    Prudkoglyad, A. F.
    Ryzhikov, S. V.
    Rykalin, V. I.
    Ryabov, A. D.
    Ryabova, T. D.
    Ryazantsev, A. V.
    Semenov, P. A.
    Senko, V. A.
    Slabospitsky, S. R.
    Soldatov, M. M.
    Solovyov, L. F.
    Uzunyan, A. V.
    Fakhrutdinov, R. M.
    Shalanda, N. A.
    Yakimchuk, V. I.
    Yakutin, A. E.
    Bazhanov, N. A.
    Belov, D. V.
    Borisov, N. S.
    Volnykh, V. P.
    Goloskokov, S. V.
    Gorodnov, I. S.
    Dolzhikov, A. S.
    PHYSICS OF PARTICLES AND NUCLEI, 2023, 54 (01) : 69 - 184
  • [26] The gas-phase abundances of heavy elements and the destruction of dust grains in Herbig-Haro shock waves
    BeckWinchatz, B
    Bohm, KH
    NoriegaCrespo, A
    ASTRONOMICAL JOURNAL, 1996, 111 (01): : 346 - 354
  • [27] Nonplanar Positron-Acoustic Shock Waves in Astrophysical Plasmas
    M. G. Shah
    M. R. Hossen
    A. A. Mamun
    Brazilian Journal of Physics, 2015, 45 : 219 - 224
  • [28] Physics and Phenomenology of Weakly Magnetized, Relativistic Astrophysical Shock Waves
    Vanthieghem, Arno
    Lemoine, Martin
    Plotnikov, Illya
    Grassi, Anna
    Grech, Mickael
    Gremillet, Laurent
    Pelletier, Guy
    GALAXIES, 2020, 8 (02):
  • [29] Nonplanar Positron-Acoustic Shock Waves in Astrophysical Plasmas
    Shah, M. G.
    Hossen, M. R.
    Mamun, A. A.
    BRAZILIAN JOURNAL OF PHYSICS, 2015, 45 (02) : 219 - 224
  • [30] An experiment on imploding conical shock waves
    B.W. Skews
    N. Menon
    M. Bredin
    E.V. Timofeev
    Shock Waves, 2002, 11 : 323 - 326