Robust Boosted Parameter Based Combined Classifier for Rotation Invariant Texture Classification

被引:3
|
作者
El-Baz, A. H. [1 ,2 ]
Tolba, A. S. [3 ]
Pal, Sankar K. [2 ]
机构
[1] Damietta Univ, Fac Sci, Dept Math, New Damietta 34517, Egypt
[2] Indian Stat Inst, Ctr Soft Comp Res, Kolkata 700035, W Bengal, India
[3] Mansoura Univ, Fac Comp & Informat, Dept Comp Sci, Mansoura, Egypt
关键词
ENSEMBLE CLASSIFIER; GRAY-SCALE; ROUGH SET; FEATURES; COMBINATION;
D O I
10.1080/08839514.2016.1138806
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Texture analysis and classification remain as one of the biggest challenges for the field of computer vision and pattern recognition. This article presents a robust hybrid combination technique to build a combined classifier that is able to tackle the problem of classification of rotation-invariant 2D textures. Diversity in the components of the combined classifier is enforced through variation of the parameters related to both architecture design and training stages of a neural network classifier. The boosting algorithm is used to make perturbation of the training set using Multi-Layer Perceptron (MLP) as the base classifier. The final decision of the proposed combined classifier is based on the majority voting. Experiments' results on a standard benchmark database of rotated textures show that the proposed hybrid combination method is very robust, and it presents an excellent texture discrimination for all considered classes, overcoming traditional texture modification methods.
引用
收藏
页码:77 / 96
页数:20
相关论文
共 50 条
  • [1] Robust rotation invariant texture classification
    Porter, R
    Canagarajah, N
    [J]. 1997 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I - V: VOL I: PLENARY, EXPERT SUMMARIES, SPECIAL, AUDIO, UNDERWATER ACOUSTICS, VLSI; VOL II: SPEECH PROCESSING; VOL III: SPEECH PROCESSING, DIGITAL SIGNAL PROCESSING; VOL IV: MULTIDIMENSIONAL SIGNAL PROCESSING, NEURAL NETWORKS - VOL V: STATISTICAL SIGNAL AND ARRAY PROCESSING, APPLICATIONS, 1997, : 3157 - 3160
  • [2] Noise robust rotation invariant features for texture classification
    Maani, Rouzbeh
    Kalra, Sanjay
    Yang, Yee-Hong
    [J]. PATTERN RECOGNITION, 2013, 46 (08) : 2103 - 2116
  • [3] Noise robust and rotation invariant texture classification based on local distribution transform
    Mohammad Hossein Shakoor
    Reza Boostani
    [J]. Multimedia Tools and Applications, 2021, 80 : 8639 - 8666
  • [4] Robust rotation-invariant texture classification using a model based approach
    Campisi, P
    Neri, A
    Panci, G
    Scarano, G
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2004, 13 (06) : 782 - 791
  • [5] Noise robust and rotation invariant texture classification based on local distribution transform
    Shakoor, Mohammad Hossein
    Boostani, Reza
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (06) : 8639 - 8666
  • [6] Noise robust and rotation invariant entropy features for texture classification
    Shakoor, Mohammad Hossein
    Tajeripour, Farshad
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2017, 76 (06) : 8031 - 8066
  • [7] Noise robust and rotation invariant framework for texture analysis and classification
    Legaz-Aparicio, Alvar-Gines
    Verdu-Monedero, Rafael
    Engan, Kjersti
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2018, 335 : 124 - 132
  • [8] Noise robust and rotation invariant entropy features for texture classification
    Mohammad Hossein Shakoor
    Farshad Tajeripour
    [J]. Multimedia Tools and Applications, 2017, 76 : 8031 - 8066
  • [9] Texture classification with combined rotation and scale invariant wavelet features
    Muneeswaran, K
    Ganesan, L
    Arumugam, S
    Soundar, KR
    [J]. PATTERN RECOGNITION, 2005, 38 (10) : 1495 - 1506
  • [10] Sorted random projections for robust rotation-invariant texture classification
    Liu, Li
    Fieguth, Paul
    Clausi, David
    Kuang, Gangyao
    [J]. PATTERN RECOGNITION, 2012, 45 (06) : 2405 - 2418