Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies

被引:47
|
作者
Akbar, Rahmad [1 ,2 ]
Bashour, Habib [3 ]
Rawat, Puneet [1 ,2 ,4 ]
Robert, Philippe A. [1 ,2 ]
Smorodina, Eva [5 ]
Cotet, Tudor-Stefan [6 ]
Flem-Karlsen, Karine [1 ,2 ,7 ]
Frank, Robert [1 ,2 ]
Mehta, Brij Bhushan [1 ,2 ]
Mai Ha Vu [8 ]
Zengin, Talip [1 ,2 ,9 ]
Gutierrez-Marcos, Jose [3 ]
Lund-Johansen, Fridtjof [1 ,2 ]
Andersen, Jan Terje [1 ,2 ,7 ]
Greiff, Victor [1 ,2 ]
机构
[1] Univ Oslo, Dept Immunol, Oslo, Norway
[2] Oslo Univ Hosp, Oslo, Norway
[3] Univ Warwick, Sch Life Sci, Coventry, W Midlands, England
[4] Indian Inst Technol Madras, Bhupat & Jyoti Mehta Sch Biosci, Dept Biotechnol, Chennai, Tamil Nadu, India
[5] Lomonosov Moscow State Univ, Fac Bioengn & Bioinformat, Moscow, Russia
[6] Imperial Coll London, Dept Life Sci, London, England
[7] Univ Oslo, Inst Clin Med, Dept Pharmacol, Oslo, Norway
[8] Univ Oslo, Dept Linguist & Scandinavian Studies, Oslo, Norway
[9] Mugla Sitki Kocman Univ, Dept Bioinformat, Mugla, Turkey
关键词
Machine learning; artificial intelligence; antibody; antigen; developability; drug design; B-CELL EPITOPES; COMPLEMENTARITY-DETERMINING REGIONS; CONCENTRATION-DEPENDENT VISCOSITY; AGGREGATION-PRONE REGIONS; T-CELL; COMPUTATIONAL DESIGN; THERAPEUTIC PROTEINS; HUMAN IGG1; AFFINITY MATURATION; RECEPTOR SEQUENCES;
D O I
10.1080/19420862.2021.2008790
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Although the therapeutic efficacy and commercial success of monoclonal antibodies (mAbs) are tremendous, the design and discovery of new candidates remain a time and cost-intensive endeavor. In this regard, progress in the generation of data describing antigen binding and developability, computational methodology, and artificial intelligence may pave the way for a new era of in silico on-demand immunotherapeutics design and discovery. Here, we argue that the main necessary machine learning (ML) components for an in silico mAb sequence generator are: understanding of the rules of mAb-antigen binding, capacity to modularly combine mAb design parameters, and algorithms for unconstrained parameter-driven in silico mAb sequence synthesis. We review the current progress toward the realization of these necessary components and discuss the challenges that must be overcome to allow the on-demand ML-based discovery and design of fit-for-purpose mAb therapeutic candidates.
引用
收藏
页数:35
相关论文
共 50 条
  • [31] Application of machine learning-based approach in food drying: opportunities and challenges
    Khan, Md Imran H.
    Sablani, Shyam S.
    Joardder, M. U. H.
    Karim, M. A.
    [J]. DRYING TECHNOLOGY, 2022, 40 (06) : 1051 - 1067
  • [32] DETERMINATION OF SIGMA SCORE BASED ON BIOLOGICAL VARIATION FOR HAEMOSTASIS ASSAYS: FIT-FOR-PURPOSE FOR DAILY PRACTICE?
    Meijer, Piet
    Hollestelle, Martine
    Ruinemans-Koerts, Janneke
    Idema, Rene
    de Maat, Moniek
    [J]. INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, 2019, 41 : 116 - 116
  • [33] Determination of sigma score based on biological variation for haemostasis assays: fit-for-purpose for daily practice?
    Hollestelle, Martine J.
    Ruinemans-Koerts, Janneke
    Idema, Rene N.
    Meijer, Piet
    de Maat, Moniek P. M.
    [J]. CLINICAL CHEMISTRY AND LABORATORY MEDICINE, 2019, 57 (08) : 1235 - 1241
  • [34] A fit-for-purpose strategy for the risk-based immunogenicity testing of biotherapeutics: a European industry perspective
    Kloks, Cathelijne
    Berger, Claudia
    Cortez, Pierre
    Dean, Yann
    Heinrich, Julia
    Jensen, Lisbeth Bjerring
    Koppenburg, Vera
    Kostense, Stefan
    Kramer, Daniel
    Spindeldreher, Sebastian
    Kirby, Hishani
    [J]. JOURNAL OF IMMUNOLOGICAL METHODS, 2015, 417 : 1 - 9
  • [35] Determination of sigma score based on biological variation for haemostasis assays: Fit-for-purpose for daily practice?
    Van Essen-Hollestelle, M. J.
    Ruinemans-Koerts, J.
    Idema, R. N.
    Meijer, P.
    De Maat, M. P.
    [J]. CLINICA CHIMICA ACTA, 2019, 493 : S525 - S526
  • [36] Design Guidelines for Machine Learning-based Cybersecurity in Internet of Things
    Boukerche, Azzedine
    Coutinho, Rodolfo W. L.
    [J]. IEEE NETWORK, 2021, 35 (01): : 393 - 399
  • [37] Machine learning-based design of pincer catalysts for polymerization reaction
    Dinda, Shrabani
    Bhola, Tanvi
    Pant, Suyash
    Chandrasekaran, Anand
    Chew, Alex K.
    Halls, Mathew D.
    Sastry, Madhavi
    [J]. Journal of Catalysis, 2024, 439
  • [38] Software Design Decisions for Greener Machine Learning-based Systems
    del Rey, Santiago
    [J]. PROCEEDINGS 2024 IEEE/ACM 3RD INTERNATIONAL CONFERENCE ON AI ENGINEERING-SOFTWARE ENGINEERING FOR AI, CAIN 2024, 2024, : 256 - 258
  • [39] Machine Learning-Based Gesture Recognition Glove: Design and Implementation
    Filipowska, Anna
    Filipowski, Wojciech
    Raif, Pawel
    Pieniążek, Marcin
    Bodak, Julia
    Ferst, Piotr
    Pilarski, Kamil
    Sieciński, Szymon
    Doniec, Rafal Jan
    Mieszczanin, Julia
    Skwarek, Emilia
    Bryzik, Katarzyna
    Henkel, Maciej
    Grzegorzek, Marcin
    [J]. Sensors, 2024, 24 (18)
  • [40] A Machine Learning-Based Approach for the Design of Lower Limb Exoskeleton
    Varma, V. S.
    Yogeshwar Rao, R.
    Vundavilli, P. R.
    Pandit, M. K.
    Budarapu, P. R.
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2022, 19 (08)