Progress and challenges for the machine learning-based design of fit-for-purpose monoclonal antibodies

被引:47
|
作者
Akbar, Rahmad [1 ,2 ]
Bashour, Habib [3 ]
Rawat, Puneet [1 ,2 ,4 ]
Robert, Philippe A. [1 ,2 ]
Smorodina, Eva [5 ]
Cotet, Tudor-Stefan [6 ]
Flem-Karlsen, Karine [1 ,2 ,7 ]
Frank, Robert [1 ,2 ]
Mehta, Brij Bhushan [1 ,2 ]
Mai Ha Vu [8 ]
Zengin, Talip [1 ,2 ,9 ]
Gutierrez-Marcos, Jose [3 ]
Lund-Johansen, Fridtjof [1 ,2 ]
Andersen, Jan Terje [1 ,2 ,7 ]
Greiff, Victor [1 ,2 ]
机构
[1] Univ Oslo, Dept Immunol, Oslo, Norway
[2] Oslo Univ Hosp, Oslo, Norway
[3] Univ Warwick, Sch Life Sci, Coventry, W Midlands, England
[4] Indian Inst Technol Madras, Bhupat & Jyoti Mehta Sch Biosci, Dept Biotechnol, Chennai, Tamil Nadu, India
[5] Lomonosov Moscow State Univ, Fac Bioengn & Bioinformat, Moscow, Russia
[6] Imperial Coll London, Dept Life Sci, London, England
[7] Univ Oslo, Inst Clin Med, Dept Pharmacol, Oslo, Norway
[8] Univ Oslo, Dept Linguist & Scandinavian Studies, Oslo, Norway
[9] Mugla Sitki Kocman Univ, Dept Bioinformat, Mugla, Turkey
关键词
Machine learning; artificial intelligence; antibody; antigen; developability; drug design; B-CELL EPITOPES; COMPLEMENTARITY-DETERMINING REGIONS; CONCENTRATION-DEPENDENT VISCOSITY; AGGREGATION-PRONE REGIONS; T-CELL; COMPUTATIONAL DESIGN; THERAPEUTIC PROTEINS; HUMAN IGG1; AFFINITY MATURATION; RECEPTOR SEQUENCES;
D O I
10.1080/19420862.2021.2008790
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Although the therapeutic efficacy and commercial success of monoclonal antibodies (mAbs) are tremendous, the design and discovery of new candidates remain a time and cost-intensive endeavor. In this regard, progress in the generation of data describing antigen binding and developability, computational methodology, and artificial intelligence may pave the way for a new era of in silico on-demand immunotherapeutics design and discovery. Here, we argue that the main necessary machine learning (ML) components for an in silico mAb sequence generator are: understanding of the rules of mAb-antigen binding, capacity to modularly combine mAb design parameters, and algorithms for unconstrained parameter-driven in silico mAb sequence synthesis. We review the current progress toward the realization of these necessary components and discuss the challenges that must be overcome to allow the on-demand ML-based discovery and design of fit-for-purpose mAb therapeutic candidates.
引用
收藏
页数:35
相关论文
共 50 条
  • [1] Nanofiltration for circularity: Fit-for-purpose design and evaluation
    Villalobos, Luis Francisco
    Zhang, Junwei
    Elimelech, Menachem
    [J]. ONE EARTH, 2023, 6 (07): : 767 - 771
  • [2] A Design Methodology for Fit-for-Purpose Human Views
    Handley, Holly A. H.
    [J]. SYSTEMS ENGINEERING, 2016, 19 (06) : 498 - 509
  • [3] Pathway Based Toxicology and Fit-for-Purpose Assays
    Clewell, Rebecca A.
    McMullen, Patrick D.
    Adeleye, Yeyejide
    Carmichael, Paul L.
    Andersen, Melvin E.
    [J]. VALIDATION OF ALTERNATIVE METHODS FOR TOXICITY TESTING, 2016, 856 : 205 - 230
  • [4] 'Fit-for-purpose?' - Challenges and opportunities for applications of blockchain technology in the future of healthcare
    Mackey T.K.
    Kuo T.-T.
    Gummadi B.
    Clauson K.A.
    Church G.
    Grishin D.
    Obbad K.
    Barkovich R.
    Palombini M.
    [J]. BMC Medicine, 17 (1)
  • [5] Assessment of Land Administration in Ecuador Based on the Fit-for-Purpose Approach
    Todorovski, Dimo
    Salazar, Rodolfo
    Jacome, Ginella
    [J]. LAND, 2021, 10 (08)
  • [6] DEVELOPING A BESPOKE NEURAL NETWORK MODEL FOR DIAGNOSING ALZHEIMER'S DEMENTIA: A FIT-FOR-PURPOSE MACHINE LEARNING STUDY
    Frazer, C.
    Arackal, J.
    Jatoi, S.
    Kachadoorian, C.
    Jacob, S.
    Graber, C.
    [J]. VALUE IN HEALTH, 2024, 27 (06) : S350 - S350
  • [7] A Fit-for-Purpose algorithm for Environmental Monitoring based on Maximum likelihood, Support Vector Machine and Random Forest
    Jamali, Ali
    [J]. ISPRS TECHNICAL COMMISSION III WG III/2, 10 JOINT WORKSHOP MULTIDISCIPLINARY REMOTE SENSING FOR ENVIRONMENTAL MONITORING, 2019, 42-3 (W7): : 25 - 32
  • [8] An Overview of Machine Learning, Deep Learning, and Reinforcement Learning-Based Techniques in Quantitative Finance: Recent Progress and Challenges
    Sahu, Santosh Kumar
    Mokhade, Anil
    Bokde, Neeraj Dhanraj
    [J]. APPLIED SCIENCES-BASEL, 2023, 13 (03):
  • [9] The peri-urban cadastre of Addis Ababa: Status, challenges, and fit-for-purpose prospects
    Metaferia, Mekonnen Tesfaye
    Bennett, Rohan Mark
    Alemie, Berhanu Kefale
    Koeva, Mila
    [J]. LAND USE POLICY, 2023, 125
  • [10] The peri-urban cadastre of Addis Ababa: Status, challenges, and fit-for-purpose prospects
    Metaferia, Mekonnen Tesfaye
    Bennett, Rohan Mark
    Alemie, Berhanu Kefale
    Koeva, Mila
    [J]. LAND USE POLICY, 2023, 125